T2K and T2K+SK Joint Fit

Tristan Doyle on behalf of the T2K Collaboration

NuFACT 2024

Thursday 19th September 2024

Tristan Doyle (Stony Brook University)

Neutrino Oscillations

Oscillations characterised by Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$s_{ii} = \sin \theta_{ii}, \ c_{ii} = \cos \theta_{ii}$$

 $\begin{array}{c|c} \mbox{Atmospherics and LBL} \\ \theta_{23} \sim 45^{\circ} \\ |\Delta m_{32}^2| \sim 2.5 \times 10^{-3} \ {\rm eV}^2 \end{array} \begin{array}{c} \mbox{Reactors and LBL} \\ \theta_{13} \sim 10^{\circ} \\ \delta_{CP} \ {\rm unknown} \end{array} \begin{array}{c} \mbox{Solar and Reactors} \\ \theta_{12} \sim 35^{\circ} \\ \Delta m_{21}^2 \sim 7.5 \times 10^{-5} \ {\rm eV}^2 \end{array}$

Long baseline (LBL) experiments:

→ Provide the most precise measurements of θ_{23} and $|\Delta m_{32}^2|$ → δ_{CP} and the sign of Δm_{32}^2 are unknown but accessible to LBL

Tristan Doyle (Stony Brook University)

Accelerator Neutrino Oscillations

- δ_{CP} modifies neutrino/antineutrino appearance $(\nu_{\mu} \rightarrow \nu_{e})$ probability:
 - ightarrow Circular modulation over 2π period
 - \rightarrow Asymmetric effect
- Disappearance probability $(\nu_{\mu} \rightarrow \nu_{\mu})$:
 - $\rightarrow \sin^2 2\theta_{23}$ modulates amplitude
 - \rightarrow Frequency of oscillation

 $\sim |\Delta m^2_{23}|$

The T2K Experiment

- ν_e and $\bar{\nu}_e$ appearance \rightarrow determine θ_{13} and δ_{CP}
- u_{μ} and u_{μ} disappearance \rightarrow precise measurement of $heta_{23}$ and $|\Delta m_{32}^2|$
- Neutrino cross-section measurements \rightarrow see talk by Laura Munteanu

Tristan Doyle (Stony Brook University)

T2K Beam

- 30 GeV proton beam extracted from J-PARC main ring onto graphite target
 - $\rightarrow\,$ Produces hadrons: mostly pions and kaons
- Hadrons are charge-selected and focused by three magnetic horns
 - ightarrow Select positive hadrons to produce predominantly u_{μ} beam
 - $\rightarrow\,$ Select negative hadrons to produce predominantly $\bar{\nu}_{\mu}$ beam
- $\bullet\,$ Beam directed 2.5° away from SK

Thursday 19th September 2024 5 / 30

Near Detectors

- 280 m downstream of beam target
- INGRID: on-axis detector
 - $\rightarrow\,$ Monitor beam intensity, direction & stability
 - $\rightarrow~$ Constrain flux systematics
- ND280: off-axis detector
 - $\rightarrow~$ Same 2.5° off-axis angle as SK
 - $\rightarrow~$ Consists of several sub-detectors in a 0.2 T magnetic field
 - \rightarrow Measure neutrino interactions, intrinsic ν_e contribution and wrong-sign background
 - $\rightarrow\,$ Constrain flux and cross-section uncertainties

Super-Kamiokande

- 2.5° off-axis
- 50 kton water Cherenkov detector
- Doped with 0.03% Gd₂(SO₄)₃ in 2022 to improve neutron tagging efficiency

- Excellent particle identification capability
- < 1% μ misidentified as e
- μ produce sharp rings
- e produce fuzzy rings

Thursday 19th September 2024 7 / 30

Oscillation Analysis Strategy

- Sequential analysis: first fit near detector data, then fit SK data
- Both fitting approaches produce consistent results

Tristan Doyle (Stony Brook University)

Oscillation Analysis Strategy

- Joint analysis: simultaneous fit to near and far detector data
- Both fitting approaches produce consistent results

Tristan Doyle (Stony Brook University)

Latest T2K Oscillation Analysis

- Updates since 2022 analysis:
 - $\rightarrow~10\%$ more data in neutrino mode
 - $\rightarrow\,$ Improved SK detector systematics treatment
 - $\rightarrow\,$ Added selection cuts to distinguish decay electrons and neutrons at SK
- See talk by Ed Atkin

Tristan Doyle (Stony Brook University)

Flux Model

- Use NA61/SHINE hadron production data with replica T2K target to inform flux model
 - → Eur. Phys. J. C 76, 617 (2016), Eur. Phys. J. C 76, 84 (2016)
 - $\rightarrow\,$ Reduces flux uncertainty from ${\sim}10\%$ to ${\sim}5\%$ around flux peak
 - ightarrow Increases nominal u_{μ} and u_{e} fluxes
 - $\rightarrow\,$ Reduce uncertainties at higher energies

T2K and T2K+SK Joint Fit

Thursday 19th September 2024 10 / 30

Cross-section Model

- Dominated by CCQE interactions at T2K energies
 - \rightarrow Spectral Function model from Behnar et al.
 - $\rightarrow\,$ Paper on parameterisation
- Significant contributions from 2p2h and resonant interactions
 - \rightarrow Valencia model for 2p2h
 - → Rein-Sehgal with lepton mass corrections for single pion production

• Mismodelling can lead to biases in neutrino energy reconstruction

 $\rightarrow\,$ Constrain cross-section model with near detector data

Near Detector Fit

- 22 samples separated by:
 - $\rightarrow~$ Beam configuration
 - $\rightarrow~$ Lepton candidate charge
 - \rightarrow Target (CH/H₂O)
 - $\rightarrow\,$ Number of pions, protons and photons

• See talk by Ewan Miller

SK Samples

- 2 samples 1R μ -like/e-like in ν -mode \rightarrow CCQE enhanced
- 2 samples $CC1\pi$ enhanced (2 rings or additional decay electron)
- 2 samples 1R μ -like/e-like in $\bar{\nu}$ -mode \rightarrow CCQE enhanced
- New detector covariance matrix at SK

Sample	Last Analysis	This Analysis		
ν -mode 1R μ	3.4%	3.2%		
ν-mode 1R e	5.2%	4.9%		
ν -mode 2R μ	4.9%	3.9%		
ν -mode 1Re 1d.e.	14.3%	6.3%		
$\overline{\nu}$ -mode 1R μ	3.9%	5.0%		
$\overline{\nu}$ -mode 1R e	5.8%	6.7%		

Tristan Doyle (Stony Brook University)

T2K and T2K+SK Joint Fit

Thursday 19th September 2024 13 / 30

T2K Oscillation Analysis Results

• CP-conserving values are within 2σ interval

T2K Oscillation Analysis Results

- Bayes Factor B(NO/IO) = 3.3
- Bayes Factor B($heta_{23} > 0.5/ heta_{23} < 0.5$) = 2.6
- Weak preference for normal ordering and upper octant

Tristan Doyle (Stony Brook University)

Joint Analyses

- Two joint analyses released in 2023
- T2K (beam) + NO ν A (beam)
 - $\rightarrow\,$ See next talk for details
- T2K (beam) + SK (atmospherics) Arxiv 2405.12488
 - $\rightarrow\,$ T2K data (5 samples) POT: 3.6 $\times\,10^{21}$ Eur. Phys. J. C 83, 782
 - $\rightarrow\,$ SK-IV data (18 samples) 3244 days PTEP 2019 5, 054F01

Tristan Doyle (Stony Brook University)

T2K and T2K+SK Joint Fit

Thursday 19th September 2024 16 / 30

Atmospheric Oscillations in SK

- Resonant-induced matter effects between 2 and 10 GeV in up-going neutrinos
 - $\rightarrow\,$ Enhancement of ν in NO; enhancement of $\bar{\nu}$ in IO
 - ightarrow Sensitivity to $heta_{23}$ octant
 - \rightarrow Effect not degenerate with δ_{CP}

Atmospheric neutrino oscillation probability (normal ordering)

T2K+SK Joint Analysis

- T2K has good sensitivity to δ_{CP} but mild sensitivity to mass ordering
- SK has better sensitivity to mass ordering than δ_{CP}
- Joint analysis breaks degeneracies between δ_{CP} and mass ordering

T2K+SK Systematics Model

- Energy spectra of T2K samples and low energy SK samples overlap
 - $\rightarrow\,$ Correlated systematics: T2K near detector can be used to constrain cross-section uncertainties for low energy atmospheric samples

T2K+SK Systematics Model

Interaction Model Summary Detector Model "Low-energy" samples "High-energy" samples SK T2K FD SK FC sub-GeV and T2K SK FC multi-GeV, PC, Upmu Parameter index T2K model with ND280 constraint. Charged 70 correlated in low-E/highE (except for high-Q² parameters) 0.8 Current **Ouasi-Elastic** high-Q² params w/ND280 (CCOE) 60 0.6+ extra u./u. ysec diff Two particles SK model (100% error) -0.4two holes T2K model w/ND280 50 + T2K-style shape error (CC2p2h) -0.2T2K model w/ND280 Resonant 40+ new pashape uncertainty 3 dials also in T2K model Interactions 0 recent, larger T2K priors + extra NC1π^o uncertainties Deep 30 -0.2T2K model w/ND28 inelastic Tau neutrino SK model (25% normalization error -0.420 interactions correlated in low-E/highE -0.6**Final State** T2K model w/ND280 10F Interactions (mostly same as SK model -0.8Secondary T2K model, correlated in low-E/high-E Interactions not applied to SK Upmu samples 70 20 30 4050 60 Parameter index High energy mostly based on SK

• Same detector simulation and reconstruction used in both experiments

 $\rightarrow\,$ Correlated detector systematics included in joint analysis

SK Atmospheric Samples

Multi-GeV samples

ightarrow Sensitive to mass ordering and $heta_{23}$ octant

Sub-GeV samples

 \rightarrow Sensitive to δ_{CP}

Upward-going muons

ightarrow Sensitive to $|\Delta m^2_{32}|$ and $\sin^2 2 heta_{23}$ octant

T2K+SK Oscillation Analysis Results: θ_{23} and δ_{CP}

- T2K and SK prefer different octants for θ_{23}
 - $\rightarrow\,$ Joint analysis has weaker constraint than individual experiments and higher probability of maximal mixing
- The CP-conserving value of the Jarlskog invariant ($J_{CP} = 0$) is excluded with a significance varying between 1.9σ and 2.0σ
- Frequentist analyses find a *p*-value of 0.050 for a CP conservation hypothesis defined as $J_{CP} = 0$

Tristan Doyle (Stony Brook University)

T2K+SK Oscillation Analysis Results: mass ordering

- Slight preference for normal ordering
- Frequentist p-values = 0.58 for NO, 0.08 for IO
 - ightarrow Corresponds to 1.64 σ deviation assuming equal prior probabilities
- Bayesian analysis gives Bayes factor B(NO/IO) = 8.98

 $\rightarrow\,$ c.f. T2K analysis B(NO/IO) = 3.3 $\,$

Tristan Doyle (Stony Brook University)

Future Plans for T2K

- More data taken in 2023/2024
- $\bullet\,$ Beamline upgrades $\rightarrow\,750$ kW achieved in December 2023
- ND280 upgrade installed and took first data

Tristan Doyle (Stony Brook University)

Beamline Upgrades

- Replacement of Main Ring power supplies to allow for higher repetition rate from 2.48 s to 1.36 s
- Horn being operated at 320 kA instead of 250 kA
 - $\rightarrow~10\%$ increase in neutrino flux
- Beam power increased to 800 kW in June 2024

Tristan Doyle (Stony Brook University)

ND280 Upgrade

- To address limitations of ND280, replace PØD with three new subdetectors:
 - \rightarrow SuperFGD: highly segmented target material with excellent tracking capability \rightarrow see my talk later today
 - \rightarrow High Angle TPCs: measure momentum, charge and particle ID with better angular acceptance \rightarrow see talk by Samira Hassani
 - $\rightarrow\,$ Time-of-Flight: precise timing information to reject backgrounds and improve reconstruction

Tristan Doyle (Stony Brook University)

ND280 Upgrade Physics Benefits

- Higher efficiency for backwards and high-angle muons
- Lower proton reconstruction threshold
- Reconstruct neutron kinematics event by event for the first time

First Neutrino Interactions in ND280 Upgrade

• First beam data taken in November/December 2023 and February 2024 with SFGD, bottom HAT and four TOF panels

Tristan Doyle (Stony Brook University)

T2K and T2K+SK Joint Fit

Thursday 19th September 2024 28 / 30

ND280 Upgrade Complete

• Upgrade installation complete and first data with fully upgraded ND280 in June 2024

Tristan Doyle (Stony Brook University)

T2K and T2K+SK Joint Fit

Thursday 19th September 2024 29 / 30

Summary

- T2K is a long baseline experiment aiming to make precise measurements of θ_{23} and Δm_{32}^2 , looking to distinguish the neutrino mass ordering, and searching for CP violation
- New T2K oscillation analysis includes 10% more data in neutrino mode and improved detector systematics
 - $\rightarrow~$ CP conservation excluded at 90% CL
 - $\rightarrow\,$ Weak preference for normal ordering and upper octant
- Presented joint analysis with SK
 - \to The CP-conserving value of the Jarlskog invariant is excluded with a significance varying between 1.9σ and 2.0σ
- See next talk for T2K+NO ν A results
- Lots of exciting developments coming for T2K with beamline and detector upgrades

BACKUP

Beam Composition

Flux Systematics: ν_{μ}

BACKUP

Flux Systematics: ν_e

BACKUP

Cross-Section Model: CCQE

- Spectral Function model by Benhar et al. for nuclear structure
- 22 parameters for modifying lepton and nucleon kinematics
 - $\rightarrow\,$ Separated by C vs O and ν vs $\bar{\nu}$ where appropriate
- Change relative occupancy and shape of momentum distributions within nuclear shells
- Removal energy (E_{rmv}) treatment developed using scattering data
- Normalisation of the Short Range Correlation (SRC) contribution
- Inclusion of Pauli Blocking and optical potential

Cross-Section Model: 2p2h

- Base model: Valencia 2p2h
- Parameters to control:
 - \rightarrow Normalisation
 - \rightarrow Shape
 - \rightarrow Pair contributions PN vs NN (NP vs PP in $\bar{\nu}$ mode)
 - \rightarrow Energy dependence

Cross-Section Model: Single Pion Production

- Base model: Rein-Sehgal with lepton mass corrections
- Parameters to control:
 - \rightarrow Form factors M_A^{RES} and C_A^5
 - $\rightarrow~$ Non-resonant background
 - $\rightarrow~$ Channel normalisations
 - \rightarrow Removal energy
 - \rightarrow Resonance decay kinematics

Near Detector Oscillation Samples: Previous Analysis

 $CC0\pi$

CC-Other

• Have equivalent selections in antineutrino mode, where wrong-sign background (ν_{μ}) is also selected

ightarrow 3 topologies imes 2 FGDs imes 3 neutrino flavour-mode combinations = 18 samples in total

Near Detector Oscillation Samples: Latest Analysis

New samples in neutrino mode:

- Split CC0 π sample based on presence or absence of **protons**
- Different sensitivity to nuclear effects:
 - \rightarrow Separates (q_0, q_3) peaks in Valencia 2p2h model

Near Detector Oscillation Samples: Latest Analysis

New samples in neutrino mode:

- Split CC0 π sample based on presence or absence of **protons**
- Different sensitivity to nuclear effects:
 - \rightarrow Separates (q_0, q_3) peaks in Valencia 2p2h model

- Isolate CCπ⁰ interactions by looking for photons in the ECals and TPCs
- Contributions from DIS (30%), multi-pion production (20%) and resonant π^0 production (24%)
- Improves purities of other ND samples

BACKUP

Near Detector Oscillation Samples: Latest Analysis

- 5 samples per FGD in neutrino mode
- Antineutrino mode selection unchanged
- 22 samples in total

Postfit Constraints on Flux Parameters

- Significant increases at low energy for both u_{μ} and $ar{
 u}_{\mu}$
- At flux peak (0.6 GeV) increase u_{μ} by ${\sim}10\%$ and $ar{
 u}_{\mu}$ by ${\sim}7\%$
- Flux prediction at SK constrained through correlation with ND280 flux parameters

Although shifts seem large, incur a χ^2 penalty of \sim 60 for 100 flux parameters

BACKUP

Postfit Constraints on CCQE and 2p2h Parameters

- *M_A^{QE}* increased above prior, CCQE high *Q*² cross section increased, Short Range Correlations (SRC) normalisation increased
- Pauli Blocking increased
 - ightarrow Changes low Q^2 region of CC0 π 0p with little impact on CC0 π Np
- 2p2h normalisation increased by ${\sim}20\%$ for ν and ${\sim}5\%$ for $\bar{\nu}$
 - $\rightarrow\,$ Less than previous analysis due to correlations with SRC
- 2p2h shape parameters pulled towards non- Δ region
 - \rightarrow Shift 2p2h towards low q_0

Postfit Constraints on SPP Parameters

- Form factors M_A^{RES} and C_A^5 pulled below prior value
- RS delta decay remains at prior favouring Δ -like decay
- π^0 normalisations increased above prior values, more for u_μ than $ar
 u_\mu$
- Removal energy parameters pulled almost to 0

Parameter Correlations

- Strongest correlations between degenerate parameters
- Anticorrelations introduced between flux and cross-section parameters due to strong constraints on event rate
- ND detector systematic parameters not propagated to SK

Cross-Section Correlations: Prefit

Cross-Section Correlations: Postfit

XSec Correlation Matrix

BACKUP

Systematic Uncertainties at the Near Detector

- Before ND fit, cross-section uncertainties are largest
- After fit, cross-section and flux are similar at 2.5-3.5%
- Detector uncertainties remain smallest: 2-5% before and 1-2% after

	$\delta N/N(\%)$						
Sample	Flux		Xsec		ND280		
	pri.	post.	pri.	post.	pri.	post.	
FGD1 FHC CC0 π -0p-0 γ	5.0	2.7	11.8	2.8	1.8	1.2	
FGD1 FHC CC0 π -Np-0 γ	5.5	2.8	11.7	3.2	3.5	2.2	
FGD1 FHC CC1 π -0 γ	5.2	2.7	9.1	2.7	3.0	1.4	
FGD1 FHC CC-Other-0 γ	5.4	2.8	8.0	2.8	5.2	2.3	
FGD1 FHC CC-Photon	5.5	2.8	8.5	2.8	2.8	1.8	
FGD1 RHC CC0 π	4.9	3.2	11.3	3.2	1.9	1.2	
FGD1 RHC CC1 π	4.6	3.1	10.3	3.0	4.2	2.6	
FGD1 RHC CC-Other	4.5	2.9	9.3	3.0	3.5	2.0	

ND280 Limitations

SuperFGD

- 2 million optically isolated 1 cm³ plastic scintillator cubes
- 56,000 wavelength shifting fibers
 - $\rightarrow~$ Three orthogonal fibers per cube
 - $\rightarrow\,$ Each coupled to an MPPC

BACKUP

- Employs Encapsulated Resistive Anode Micromegas (ERAMs)
- Charge spread over several pads improves spatial resolution

Mesh @ GND

DLC @ ~ 360V

TOF

- $\bullet~{\rm Six}$ plastic scintillator panels surrounding SFGD $+~{\rm HATs}$
- Double-ended readout of scintillator bars

Interactions on Hydrogen

PhysRevD.101.092003 (2020)