CEvNS Neutrino Experiments

Yu. Efremenko UTK, ORNL

September 19th 2024

NuFact 2024

Number of the slides about detectors are stolen from M-CEvNS workshops.

Coherent Elastic neutrino Nucleus Scattering (CEvNS)

A neutrino scatters on a nucleus via exchange of a Z, and the nucleus recoils as a whole;

D.Z. Freedman PRD 9 (1974) Submitted Oct 15, 1973

V.B.Kopeliovich & L.L.Frankfurt JETP Lett. 19 (1974) Submitted Jan 7, 1974

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

CEvNS cross section is predicted by the Standard Model

Coherent Elastic neutrino Nucleus Scattering (CEvNS)

A neutrino scatters on a nucleus via exchange of a Z, and the nucleus recoils as a whole;

D.Z. Freedman PRD 9 (1974) Submitted Oct 15, 1973

V.B.Kopeliovich & L.L.Frankfurt JETP Lett. 19 (1974) Submitted Jan 7, 1974

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2) \propto N$$

CEvNS cross section is predicted by the Standard Model

Coherent Elastic neutrino-Nucleus Scattering

A neutrino scatters on a nucleus via exchange of a Z, and the nucleus recoils as a whole, produce tiny recoils.

CEvNS cross-section is large, but very hard to detect

D.Z. Freedman PRD 9 (1974) Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering.

CEvNS is the Neutrino "Fog" for WIMP DM experiments

CEvNS is a new way to measure Electro-Weak angle at Low Q

$$\sigma_{tot} = \frac{G_F^2 E_v^2}{4\pi} \Big[Z \Big(1 - 4\sin^2 \theta_W \Big) - N \Big]^2 F^2(Q^2)$$

Cadeddu, M., F.Dordei, and C.Giunti, Europhysics Letters 143.2 (2-3): 34001 0.245 COH 2022+ APV 2021 SLAC $^{S}_{(0)MQ} = 0.240$ E158 APV(Cs) Q_{weak} 2020 COH 2022+ **PVDIS** APV PDG 2020 This Work Tevatron 🛃 LEP1 SLC 0.230 10^{-2} 10^{-3} 10^{-1} 10² 10^{3} 10 Q [GeV]

National Laboratory

CEvNS is a Probe of Non-Standard Neutrino Interactions (NSI)

 $\mathcal{L}_{\nu H}^{NSI} = -\frac{G_F}{\sqrt{2}} \sum_{\substack{q=u,d\\\alpha,\beta=e,\mu,\tau}} [\bar{\nu}_{\alpha} \gamma^{\mu} (1-\gamma^5) \nu_{\beta}] \times (\varepsilon_{\alpha\beta}^{qL} [\bar{q} \gamma_{\mu} (1-\gamma^5) q] + \varepsilon_{\alpha\beta}^{qR} [\bar{q} \gamma_{\mu} (1+\gamma^5) q])$

J. H J. High Energy Phys. 03(2003) 011

TABLE I.	Constraints	on NSI	parameters,	from	Ref.	[35].
----------	-------------	--------	-------------	------	------	-------

NSI parameter limit	Source		
$-1 < \varepsilon_{ee}^{uL} < 0.3$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering		
$-0.4 < arepsilon_{ee}^{uR} < 0.7$			
$-0.3 < arepsilon_{ee}^{dL} < 0.3$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering		
$-0.6 < arepsilon_{ee}^{dR} < 0.5$			
$ \varepsilon_{\mu\mu}^{uL} < 0.003$	NuTeV νN , $\bar{\nu}N$ scattering		
$-0.008 < \varepsilon_{\mu\mu}^{uR} < 0.003$			
$ \varepsilon_{\mu\mu}^{dL} < 0.003$	NuTeV νN , $\bar{\nu}N$ scattering		
$-0.008 < \varepsilon_{\mu\mu}^{dR} < 0.015$			
$ \varepsilon_{e\mu}^{uP} < 7.7 \times 10^{-4}$	$\mu \rightarrow e$ conversion on nuclei		
$ \epsilon_{e\mu}^{dP} < 7.7 \times 10^{-4}$	$\mu \rightarrow e$ conversion on nuclei		
$ \varepsilon_{e\tau}^{uP} < 0.5$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering		
$ \varepsilon_{e\tau}^{dP} < 0.5$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering		
$ \varepsilon^{uP}_{\mu\tau} < 0.05$	NuTeV νN , $\bar{\nu}N$ scattering		
$ arepsilon_{\mu au}^{dP} < 0.05$	NuTeV νN , $\bar{\nu}N$ scattering		

Non-Standard v Interactions (Supersymmetry, neutrino mass models) can impact the cross-section differently for different nuclei

arXiv:2204.04575 [hep=ex]

6

~300 publications with 15 000 citations during the last 7 years (mostly from theory folks).

CEvNS from various sources

Neutrino Production at a Stop Pion Facility

a.u.

Stop Pio Stop Pio CSNS-U-PARKS					
Facility	Beam Energy, GeV	Beam Power, MW	Beam Timing	Comments	
CSNS	1.6	0.14 -> 0.5	0.5 usec, 25 Hz	CICENNS 2025, CEVNS	
ISIS	0.8	0.16	Two 0.1 usec, 50 Hz	Decommissioned KARMEN	
Lujan	0.8	0.08	0.3 usec, 20 Hz	Capitan Mills: CEvNS & D.M.	
J-PARKS	3.0	0.85 -> 1.3	Two 0.1 usec, 25 Hz	JSNS2:Oscillations, DaRveX: C.C.	
SNS	1.3	1.7 -> 2.8	0.3 usec, 60 Hz	COHERENT: CEVNS, D.M. C.C.	
ESS	2.0 GeV	0 -> 5 MW	2860 usec, 14 Hz	nuESS (2027), CEvNS	

Coherent Capitan Mills (CCM) Lujan (LANL)

Detector

- 2.58 m in diameter and 2.25 m high, LAr purification system to remove impurities
- 200 8" TPB coated PMTs ~ 50% photo coverage, 5 ton fiducial volume, 3 t active veto region
- **Detector is located 23 m from the target**

Latest publication at: *Phys.Rev.D* 107 (2023) 9, 095036 "Prospects for detecting axionlike particles at the Coherent CAPTAIN-Mills experiment" Does CEvNS is still in agenda?

$ESS \rightarrow CEvNS program$

• Accelerator is at the initial stage of commissioning.

- First Beam expected in 2027
- Beam Energy 2 GeV and goal for the beam power is 5 MW
- Long beam spill, duty factor of 25.

Utility room "earmarked" for CEvNS

Active R&D for perspective technologies. Challenge is to discriminate from Beam Relate Neutrons and steady state backgrounds.

The Gaseous Prototype (GaP) Assembly

Neutrino Alley at the SNS

After extensive BG studies, we find a well protected location

Collaboration has 1m · 2m · 25m of good shielded space !!!

Target Building

It is 20-30 meters from the target. Space between the target and the alley is filled with steel, gravel and concrete

There are 10 M.W.E. from above

Detection of CEvNS at the SNS by the COHERENT

11.6 sigma effect Cross section accuracy 16% 14 kg, Csl crystal

CENNS-10 LAr detector 10 cm Pb + 1.25 cm Cu + 20 cm H_2O shielding

24 kg fiducial volume 2 x 8" Hamamatsu PMTs, 18% QE at 400 nm

Phys.Rev.Lett. 126 (2021) 1, 012002

250

Recoil Energy (keVnr)

Reconstructed Energy (keVee

CEvNS counts

arXiv:2406.13806

COHERENT Published Detection of CEvNS on Three Targets

All three individual results are in agreement with the Standard Model within one sigma

> However, accuracy is limited so far

Dominant source of uncertainty is the knowledge of the Neutrino Flux at the SNS We believe it is calculatable within 10% accuracy. Phys. Rev. D, 106(3):032003, 2022, 2109.11049.

Near Future at the SNS

Transition from 22 kg to 750 kg LAr detector.

Can fit at the same place where presently CENSS-10 is

Expect to see 3k CEvNS events per year

NalvETe - Sodium Iodide neutrino Experiment Tonne scale

- Up to 3400kg of Nal detectors
- 7.7kg Nal crystals
- Dual gain bases: CEvNS + CC
- Baseline: ~21-24 m

Cryo-Csl

10 kg undoped CsI at ~40K SiPM readout x2 PDE relative to PMT.

Lover threshold then original Csl result. x2.5 times light yield. Baseline: T.B.D.

Presently Quenching measurements at 40K at TUNL

Heavy Water Detector to Normalize Neutrino Flux at the SNS

S.Nakamura et. al. Nucl.Phys. A721(2003) 549

Prompt NC v_{μ} +d \rightarrow 1.8*10⁻⁴¹ cm² Delayed NC $v_{e\mu-bar}^{+}$ + d \rightarrow 6.0*10⁻⁴¹ cm² Delayed CC v_e + d \rightarrow 5.5*10⁻⁴¹ cm²

Detector calibration with Michel Electrons from cosmic muons (same energy range)

Neutrino Alley space constraints for the D2O detector are:

- 1 m diameter x 2.3 m height
- Locations 20 meters from the SNS target

Will do CC measurement on Oxygen for SN. Second Module will be with H₂O only

Detector commissioned in July 2023 Presently taking data expect to record 4 neutrinos per day. $\nu_e + d \rightarrow p + p + e^-$

Specifications

- 0.6 tons D₂O within acrylic inner vessel
- Water Cherenkov Calorimetry
- H₂O "tail catcher" for high energy e⁻
- Outer light water vessel contains PMTs, PMT support structure, and optical E S reflector. 220
- Outer steel vessel
- Lead Shielding
- Hermetic veto system

Upgrades for SNS are coming

2024 Break Through Detection of solar ⁸B neutrinos via CEvNS

PandaX-4T(China)

368 3" PMT's, 2.29 t · y, ~2.5t fiducial Analysis is mostly on S2 signal with Threshold 4 e⁻ 6720 MWE underground

20

Both experiments are 2 phase LZe detectors

S2

XENON nT(Italy)

494 3" PMT's, 3.51 tonne year, Threshold 2 phe S1 120 Phe (7e-) S2 3400 MWE underground

Signal 10.7+3.7-4.2 Measured flux $(4.7^{+3.6}_{-2.4}) \cdot 10^{6}$ cm² sec⁻¹

2024 Break Through Detection of solar ⁸B neutrinos via CEvNS

PandaX-4T(China)

368 3" PMT's, 2.29 t \cdot y, ~2.5t fiducial Analysis is mostly on S2 signal with Threshold 4 e⁻

Signal 75+/-28

Measured flux (8.4±3.1) \cdot 10⁶ cm² sec⁻¹ arXiv:2407.10892

arXiv:2408.02877v1

SNO: $(5.25^{+0.11}_{-0.12}(sys) \pm 0.16(stat.)) \cdot 10^{6} \text{ cm}^{-2}\text{s}^{-1}$

XENON nT(Italy)

494 3" PMT's, 3.51 tonne year, ?tones fiducial Threshold 2 phe S1 120 Phe (7e-) S2

Signal 10.7+3.7-4.2

Measured flux $(4.7^{+3.6}_{-2.4}) \cdot 10^6 \text{ cm}^2 \text{ sec}^{-1}$

21

Nuclear Reactors and CEvNS

Germanium Based Experiments

CONUS Four 1kg Ge detectors Brokdorf, Germany, 3.9 GW_{th} 17 m Threshold 210 eV_{ee}

Data 2018-2022

arXiv:2308.12105

	Run-1/Run-2	Run-5
ON/kg*d	248.7	426
OFF/kg*d	58.8	272
threshold/eV	296-348	210
Limit (k=0.162)	factor 17 > SM	factor 2 > SM

signal prediction: 92+-10, 3 upper limit: <163 (90% C.L.) **CONUS+** Four 1kg Ge detectors Leibstadt, Switzerland 3.6 GW_{th} 20.7 m Threshold 150 eV_{ee}

In operation since 2023 Two muon veto layers Smoller size of point contact

DRESDEN II 2.9kg Ge detector DRESDEN II(USA) 2.96 GW_{th} 8 m Threshold 150 eV_{ee}

In operation during ~3.5 months in 2021

Germanium Based Experiments

νGEN 1.5kg Ge detector Kalinin (Russia) 3.1 GW_{th} 11-12.5 m Threshold 200 eV_{ee}

Data 2022-2023

Phys.Part.Nucl.Lett. 21 (2024) 4, 680-682

Lindhard K=0.162 Mod Lindhard k=0.157

QF	Prediction, ev./kg/day	Sensitivity, ×SM	68% expectation for a 90% C.L. limit, ×SM	Best fit, ×SM	90% C.L. limit
CONUS	0.159	4.1	2.3-6.0	1.80	5.0
Dresden	0.278	2.6	1.6-3.6	0.38	2.0

TEXONO 1.43kg Ge detector Kuo-Sheng (Korea) 2.9 GW_{th} 28 m Threshold 200 eV_{ee}

Data since 2003 Preliminary limit at 4.2 SM

Considering new reactor site (Sanmen) at 11m, Tr 150 eV_{ee}

RECODE

Two arrays with five 1kg Ge detectors each, Sanmen 3.4 GW th Power plant, 11, 22 m Threshold 160 eV_{ee}

Starting in 2025

Other Technologies, Small Detectors

CONNIE 0.5 g of CCD sensors Angra (Brazil) 3.96 GW_{th} 30 m Threshold 15 eV_{ee}

Data 2021-2023

16 g of CCD starting from 2024

Ricoshet 0.68 kg Ge CryoCube with Ionization and Heat redout ILL (France) 58 MW_{th} 8.8 m Threshold 160 eV_{ee}

Data starting from 2024

RUN012: RUN013: RUN014: Validation of Detector performance assessment Background characterization crycoencis (8.6 mK) (ON/OFF) and vibration mitigation with full shielding NUCLEUS 10 g cryogenic CaWO₄detector with TES (transition Edge sensor) readout. Chooze(France) two Cores 2.4 GW_{th} each 77, 102 m Threshold 20 eV_{ee}

Starting 2025

300K stage 40K stage 4K stage 5till stage 800 mK Mixing chamber < 7 mK

MINER

Super CDMS technology Si, Ge, AI_2o_3 detectors Threshold 100 eV_{ee}

Location and time TBD

<u>iZIP</u> Detector with ionization and phonon sensors for ER/NR discrimination (>keV) *First SNOLAB Ge iZIP (fabricated at TAMU)* <u>https://arxiv.ora/pdf/1610.00006.pdf</u>

Other Technologies, Large Detectors

RED-100 200 kg LXe two phase detector 26 3" PMTs Kalinin (Russia) 3.1 GW_{th} 19 m distance Threshold 4,5 e⁻

Considering to switch to LAr 26

RELICS

50 kg LXe two phase detector Submerged in a water tank 64 2 by 2 cm² PMTs Sanmen(China) 3.4 GW_{th}, 22 m distance, threshold 1 keV_{ne}

Deployment ???

arXiv: 2405.05554

factor.

NEON 16.7 Nal[TI] detectors

Hanbit-6 (Korea) 2.8 GW_{th} 23.7 m distance Threshold 200 eV_{ee}

Data starting from 2022

There are Many Other very Nice Ideas and Developments

Many are Not Covered in This Talk (Sorry, just not enough time)

I did want to have a generic illustration for all those initiatives but failed to came out with a good one.

So, I asked I.A. to help me to draw multiple reactor neutrino detection technologies

At this point, our field shouldn't worry about A.I. competition in detectors design. At least not yet...

There are many activities around the world looking for CEvNS

CEVNs is the new tool to study neutrinos and The Standard Model First results created waterfall of theoretical interpretations CEvNS detection become worldwide efforts with multiple detector technologies Community unitize DAR, Sun and Nuclear rectors at neutrino sources This field become fertile ground for development of new low background and low threshold neutrino detectors

Next step is precision studies of CEvNS with high statistics and low systematics

Dawn of Magnificent CEvNS

