Experimental Measurements of the Muon g-2 & Searches for Charged Lepton Flavor Violation using Muons

Sophie Charlotte Middleton(Caltech)

25th International Workshop on Neutrinos from Accelerators (NuFact)

19th Sept. 2024

Argonne National Laboratory

Muons as probes for New Physics

How can muons help us explore New Physics?

Muons as Probes of New Physics

Muon g-2

Muon CLFV Searches: Motivations

Muon CLFV Searches: Design, Status

What happens next?

Muons as probes for New Physics

How can muons help us explore New Physics?

Muons as Probes of New Physics

Muon g-2

Muon CLFV Searches: Motivations

Muon CLFV Searches: Design, Status

What happens next?

Muons as Probes for New Physics

- Muons have been an invaluable probe of the Standard Model.
- Precision muon searches and searches for muon/electron flavor transitions are indirect probes of new physics:

Caltech

Muon g-2 anomaly

Muons as Probes for New Physics

- Muons have been an invaluable probe of the Standard Model.
- Precision muon searches and searches for muon/electron flavor transitions are indirect probes of new physics:

Muon g-2 anomaly

In general:

- Do not decay hadronically \rightarrow clean, well-understood backgrounds.
- Lifetime ~2.2 μ s \rightarrow can be stored efficiently before decay, decay easy to measure. *Plus:*
- Mass scaling could mean 10⁴ enhancement in coupling to BSM over electrons.

Muons as Probes for New Physics

- Muons have been an invaluable probe of the Standard Model.
- Precision muon searches and searches for muon/electron flavor transitions are indirect probes of new physics:

Muon g-2 anomaly

In general:

- Do not decay hadronically \rightarrow clean, well-understood backgrounds.
- Lifetime ~2.2 μ s \rightarrow can be stored efficiently before decay, decay easy to measure. *Plus:*
- Mass scaling could mean 10⁴ enhancement in coupling to BSM over electrons.

Can create high-intensity, clean, background-free, experimental environment to probe new physics.

Many experimental searches looking for new physics in the muon sector or ways to elucidate the apparent g-2 discrepancy will come online this decade.....

.... the 2020's are proving to be a very exciting time for muon physics!

Muon g-2

Is the g-2 measurement an indication of new physics?

Muons as Probes of New Physics

Muon g-2

Muon CLFV Searches: Motivations

Muon CLFV Searches: Design, Status

What happens next?

Muon g-2

Callech

corrections to g called the anomalous magnetic moment:

$$a_{\mu} = \frac{g-2}{2}$$
, g = 2 at tree level

QED

Electroweak

Paper

Hadronic

Vacuum **Polarization**

Hadronic Light-by-light

- Relativistic quantum field theory leads to small radiative corrections.
- g-2 can be measured and calculated to high-precision (sub-ppm).
- It has become a powerful discriminant for BSM physics.

$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP, LO}} + a_{\mu}^{\text{HVP, NLO}} + a_{\mu}^{\text{HVP, NNLO}} + a_{\mu}^{\text{HLbL}} + a_{\mu}^{\text{HLbL, NLO}}$$

$$= 116591810(43) \times 10^{-11} .$$
Theory Initiative White Paper
T. Aoyama et al. Phys. Rept. **887** (2020)

 $\frac{e}{2m}\vec{s}$

See Talk by O. Kim

Muon g-2 Experiment at FNAL

- Muons are stored in the storage ring (\sim 15 m diameter) under a 1.5 T homogeneous magnetic field.
- Muon spins precess at a rate: ω_a with respect to momentum.

 $p_{
m magic} \simeq 3.09 \; {
m GeV/c}$

 ω_s = spin precession frequency; ω_c = cyclotron frequency.

Caltech

spin

momentum

Storage

Ring

 $\omega_a = a_\mu \frac{eB}{m_\mu}$

Status of Experiment

Apr 2021: Run-1 Result (2018 data): PRL 126, 141801 (2021) Aug 2023: Run-2/3 Result (2019-20 data): PRL 131, 161802 (2023)

Caltech

Expected ~ 2025: Run-4/5/6 Result (2021-23 data)

First (2021) and Second (2023) Results

PRL **126**, 141801 (2021) PRL **131**, 161802 (2023)

- Run-1 result (2018 data) and Run-2/3 result (2019/2020 data) were consistent.
- Both renewed the most precise measurement of muon magnetic anomaly.

Caltech

 $a_{\mu}(\text{Exp}) = 0.00\ 116\ 592\ 059\ (22)\ [190\ ppb]$

See Talk by O. Kim

Experiment vs. Theory (SM)

Theory predictions from different approaches (for a_{μ} (HVP), hadronic vacuum polarization) **don't agree!**

See g-2 theory talk for more discussion!

Experiment vs. Theory (SMA)

Several on going efforts: https://muon-gm2theory.illinois.edu/

Theory predictions from different approaches (fo

$_{\mu}$ (HVP), hadronic vacuum polarization) **don't agree!**

Ab-initio lattice QCD calculation favors the measured value much better than the dispersive method.

Muon g - 2 Theory Initiative compiled the SM estimation primarily using the dispersive $\overline{}$ method for the hadronic vacuum polarization (HVP).

It uses 20+ years of $e^+e^$ data (contribution dominated by $e^+e^- \rightarrow \pi^+\pi^-$) from various collaborations (BaBar, KLOE, SND, BESIII, etc.)

See g-2 theory talk for more discussion!

What's next?: MuonE Experiment

- MuonE @ CERN (Eur. Phys. J. C (2017) 77:139): will make independent determination of hadronic leading order contribution to a_μ.
- Measure the hadronic contribution using space-like elastic scattering of 150GeV μ beam on atomic electrons.

Extract $\Delta \alpha_{had}(t)$ from shape of differential cross-section.

Caltech

What's next?: MuonE Experiment

- MuonE @ CERN (Eur. Phys. J. C (2017) 77:139): will make independent determination of hadronic leading order contribution to a_μ.
- Measure the hadronic contribution using elastic scattering μ e with 150GeV Muon beam.

Goal: 3.5 × 10¹² elastic scattering events with an electron energy larger than 1 GeV, in 3 years. Aim to achieve a stat error of 0.3% and 10 ppm sys. error. comparable with the results from the time-like dispersive approach and the lattice simulations.

What's next?: Alternative g-2 measurement

Alongside further results from Fermilab there are complementary experimental efforts:

- J-PARC g-2 experiment: provide complementary approach to measure a at the J-PARC facility
 - low emittance muon beam by cooling and re-acceleration:
 - no strong focusing & good injection efficiency (x10)
 - much more compact storage magnet

See Talk by K. Suzuki

A

Muons CLFV Searches: Motivations

Why search for CLFV in the muon sector?

Muons as Probes of New Physics

Muon g-2

Muon CLFV Searches: Motivations

Muon CLFV Searches: Design, Status

What happens next?

Charged Lepton Flavor Violation (CLFV)

- Adding neutral lepton flavor violation to the Standard Model, introduces CLFV at loop level, mediated by W bosons:

Rates heavily suppressed by GIM suppression and are far below any conceivable experiment could measure:

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left(\frac{1}{4}\right) \sin^2 2\theta_{13} \sin^2 \theta_{23} \left|\frac{\Delta m_{13}^2}{M_W^2}\right|^2 \qquad B(\mu \to e\gamma) \sim \vartheta(10^{-54})$$

Charged Lepton Flavor Violation (CLFV)

- Adding neutral lepton flavor violation to the Standard Model, introduces CLFV at loop level, mediated by W bosons:

Rates heavily suppressed by GIM suppression and are far below any conceivable experiment could measure:

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left(\frac{1}{4}\right) \sin^2 2\theta_{13} \sin^2 \theta_{23} \left|\frac{\Delta m_{13}^2}{M_W^2}\right|^2 \qquad B(\mu \to e\gamma) \sim \vartheta(10^{-54})$$

 ...but many Beyond Standard Model (BSM) theories (e.g. SO(10) SUSY, scalar leptoquarks, seesaw models) predict enhanced rates of CLFV just below current limits O(10⁻¹³).

Muon CLFV is an indirect search for New Physics and offers a deep probe of well-motivated BSM theories.

Current Experimental Searches for CLFV

• There is a global program of experiments currently coming online and which seek to observe several types of muon CLFV:

Mode	Current Upper Limit (at 90% CL)	Projected Limit (at 90% CL)	Upcoming Experiment/s
$\mu^+ \to e^+ \gamma$	3.1 x 10 ⁻¹³	4 x 10 ⁻¹⁴	MEG II
$\mu^+ \to e^+ e^+ e^-$	1.0 x 10 ⁻¹²	5 x 10 ⁻¹⁵ 10 ⁻¹⁶	Mu3e Phase-I Mu3e Phase-II
$\mu^{-}N \rightarrow e^{-}N$	7 x 10 ⁻¹³ (SINDRUM-II, 2006)	8 x 10 ⁻¹⁵ 6 x 10 ⁻¹⁶ 8 x 10 ⁻¹⁷ (Mu2e)	COMET Phase-I Mu2e Run-I Mu2e Run-II/ COMET Phase-II

Tight limits already due to nature of the muon allowing for intense muon beam and reducible, well understood backgrounds

- Can think of indirect searches in terms of Effective Field Theories;
- 90+ operators describe these processes;

Caltech

- *Eur.Phys.J.C* 82 (2022) 9, 836 reduced to 6 terms for $\mu^+ \rightarrow e^+\gamma$, $\mu^+ \rightarrow e^+e^+e^-$, and spin-independent $\mu^- N \rightarrow e^- N$;
- These represent different types of physics contributing to the three channels:

$$\delta \mathcal{L} = \frac{1}{\Lambda_{LFV}^2} \left[C_D(\overline{e}\sigma^{\alpha\beta}P_R\mu)F_{\alpha\beta} + C_S(\overline{e}P_R\mu)(\overline{e}P_Re) + C_{VR}(\overline{e}\gamma^{\alpha}P_L\mu)(\overline{e}\gamma_{\alpha}P_Re) + C_{VL}(\overline{e}\gamma^{\alpha}P_L\mu)(\overline{e}\gamma_{\alpha}P_Le) + C_{Alight}\mathcal{O}_{Alight} + C_{Aheavy\perp}\mathcal{O}_{Aheavy\perp} \right]$$

 Λ = Effective Mass Reach, **D** = dipole, **V** = vector, **S** = scalar

Eur.Phys.J.C 82 (2022) 9, 836 Davidson & Echenard

Dipole Term: Mediating $\mu^+ \rightarrow e^+ \gamma$ Contributing to $\mu^+ \rightarrow e^+ e^+ e^-$ and $\mu^- N \rightarrow e^- N$ at loop level

$$\delta \mathcal{L} = \frac{1}{\Lambda_{LFV}^2} \left[C_D(\overline{e}\sigma^{\alpha\beta}P_R\mu)F_{\alpha\beta} + C_S(\overline{e}P_R\mu)(\overline{e}P_Re) + C_{VR}(\overline{e}\gamma^{\alpha}P_L\mu)(\overline{e}\gamma_{\alpha}P_Re) + C_{VL}(\overline{e}\gamma^{\alpha}P_L\mu)(\overline{e}\gamma_{\alpha}P_Le) + C_{Alight}\mathcal{O}_{Alight} + C_{Aheavy\perp}\mathcal{O}_{Aheavy\perp} \right]$$

quark "Contact" term

i.e. 4 Fermion Term $\mu^- N \rightarrow e^- N$ at leading order. Heavily suppressed in $\mu^+ \rightarrow e^+ \gamma$

Au and Al are prototypical "heavy" and "light" targets

Caltech

$$\delta \mathcal{L} = \frac{1}{\Lambda_{LFV}^2} \Big[C_D (\overline{e} \sigma^{\alpha\beta} P_R \mu) F_{\alpha\beta} + C_S (\overline{e} P_R \mu) (\overline{e} P_R e) + C_{VR} (\overline{e} \gamma^{\alpha} P_L \mu) (\overline{e} \gamma_{\alpha} P_R e) \\ + C_{VL} (\overline{e} \gamma^{\alpha} P_L \mu) (\overline{e} \gamma_{\alpha} P_L e) + \frac{C_{Alight} \mathcal{O}_{Alight} + C_{Aheavy\perp} \mathcal{O}_{Aheavy\perp}}{C_{Aheavy\perp}} \Big]$$

Davidson & Echenard

SINDRUM-I [1e-12

Current physics reach at O(10³) TeV, Projections of upto O(10⁴) TeV in next generation.

10⁵ ∃

10⁴⊦

10³

(TeV)

<

Effective Physics Reach

 $\theta_{g} = \pi/2 \quad \theta_{v} = \pi/4 \quad \phi = \pi/4$

/EG-II [40-14]

MEG [4.20-13]

(TeV)

<

10⁵ ∣

10⁴

10³

 $eA \rightarrow \mu A \quad \mu \rightarrow eee$

Mu3e-I [1e-15]

UM-II [7e-13] (Au)

OMET-I [1e-15] (Al

$\vec{C} \cdot \vec{e}_D$	$ \vec{e}_D \cos\theta_D$
$\vec{C} \cdot \vec{e}_S$	$ \vec{e}_S \sin\theta_D\cos\theta_S$
$\vec{C} \cdot \vec{e}_{VL}$	$ \vec{e}'_{VL} \sin\theta_D\sin\theta_S\cos\theta_V$
$\vec{C} \cdot \vec{e}_{VR}$	$ \vec{e}'_{VR} \sin\theta_D\sin\theta_S\cos\theta_V$
$\vec{C} \cdot \vec{e}_{Alight}$	$ \vec{e}_{Alight} \sin\theta_D\sin\theta_S\sin\theta_V\sin\phi$
$ec{C} \cdot ec{e}_{Aheavy\perp}$	$ \vec{e}_{Aheavy\perp} \sin\theta_D\sin\theta_S\sin\theta_V\cos\phi$

Parameterize coefficient space with spherical coordinates lets you express constraints on all three processes simultaneously.

$$\kappa_D = \cot(\theta_D - \pi/2)$$

where angle θ_D , parametrizes relative magnitude of dipole and four-fermion coefficients.

Eur.Phys.J.C 82 (2022) 9, 836 **Davidson & Echenard**

Note: plots are a slice in multi-dimensional space, several other plots shown in paper for different slices

 $\theta_{g} = \pi/2 \quad \theta_{v} = \pi/4 \quad \phi = \pi/4$

MF / PRISM [1e-18] (A Mu2e / COMET-II [1e-16] (

OMET-I [10-15]

future gen.

current gen.

existing limits

Complementarity amongst channels

- All three channels are sensitive to many New Physics models \rightarrow discovery sensitivity across the board.
- Relative Rates however will be model dependent and can be used to elucidate the underlying physics.

Mode	$\mu^+ ightarrow e^+ \ e^+ \ e^-$	$\mu^- N o e^- N$	$BR(\mu^+ ightarrow e^+ e^+ e^-)$	$BR(\mu^-N \rightarrow e^-N)$
			$BR(\mu^+ \to e^+ \gamma)$	$BR(\mu^+ \to e^+\gamma)$
MSSM	Loop	Loop	~ 6 x 10 ⁻³	10⁻³-10 ⁻²
Type I Seesaw	Loop	Loop	3 x 10 ⁻³ – 0.3	0.1-10
Type II Seesaw	Tree	Loop	(0.1 – 3) x 10 ³	10 ⁻²
Type III Seesaw	Tree	Tree	~10 ³	10 ³
LFV Higgs	Loop	Loop	10 ⁻²	0.1
Composite Higgs	Loop	Loop	0.05-0.5	2-20

Complementarity amongst channels

- All three channels are sensitive to many New Physics models \rightarrow discovery sensitivity across the board.
- Relative Rates however will be model dependent and can be used to elucidate the underlying physics.

Mode	$\mu^+ ightarrow e^+ \ e^+ \ e^-$	$\mu^- N o e^- N$	$BR(\mu^+ \rightarrow e^+ e^+ e^-)$	$BR(\mu^-N \rightarrow e^-N)$
			$BR(\mu^+ \to e^+ \gamma)$	$BR(\mu^+ \to e^+\gamma)$
MSSM	Loop	Loop	~ 6 x 10 ⁻³	10⁻³ - 10⁻²
Type I Seesaw	Loop	Loop	3 x 10 ⁻³ - 0.3	0.1-10
Type II Seesaw	Tree	Loop	(0.1 – 3) x 10 ³	10-2
Type III Seesaw	Tree	Tree	~10 ³	10 ³
LFV Higgs	Loop	Loop	10 ⁻²	0.1
Composite Higgs	Loop	Loop	0.05-0.5	2-20

CLFV: Experimental Design

Current experiments, design and status updates.

Muons as Probes of New Physics

Muon g-2

Muon CLFV Searches: Motivations

Muon CLFV Searches: Design, Status

What happens next?

 $\mu^+ \rightarrow e^+\gamma$: Physics

- Two body decay:
 - **e**⁺**γ** coincidence in time;
 - $E_{e^+} = E_{\gamma}$ 52.8 MeV;
 - $\theta_{e^+\gamma} = 180$ deg. i.e. back-to-back.

 $\theta_{e^+\gamma} = 180 \text{ deg}$.

 $\mu^+ \rightarrow e^+ \gamma$: Physics

Muon Experiments - Sophie Middleton - smidd@caltech.edu

31

 $\mu^+ \rightarrow e^+ \gamma$: Physics

$\mu^+ \rightarrow e^+ \gamma$: MEG-II Design

512 plastic scintillator plates 40 ps time resolution average

- Low mass design with single gas volume
- Drift cells with stereo wires

Liquid xenon photon detector (LXe) COBRA superconducting magnet Pixelated timing counter (pTC) Muon stopping target Cylindrical drift chamber (CDCH) Radiative decay counter (RDC)

 μ^+ stopped on thin plastic target - decay at rest to exploit the two-body kinematics.

Magnetic spectrometer and low mass drift chamber to track the candidate

LXe photon detector measures the timing, energy and position of the photon.

Based at PSI, muon stopping rate of $10^7 \mu^+/s$, p = 28 MeV/c.

Accurate reconstruction of photon and positron energy and time:

positron.

PSI proton cycrotron (2.3mA, 1.4MW) World's most intense DC muon beam

Radiative decay counter

BKG photon suppression by

identifying associated low mom.

Design:

positron.

readout with 4092 SiPM and 668 **PMT**

900L of LXe **Highly granular scintillation**

$\mu^+ ightarrow e^+ \gamma$: Status

Eur.Phys.J.C 84 (2024) 3, 216

Caltech

- MEG-II has been taking physics data since 2021.
- Results from the first physics run show:
 - No excess over background-only hypothesis:
 - Upper limit $B(\mu^+ \to e^+ \gamma) < 7.5 \times 10^{-13}$ (90% C.L.)
 - Combined with MEG: $B(\mu^+ \to e^+ \gamma) < 3.1 \times 10^{-13}$ (90% C.L.)
- x10 more data already taken: new results coming soon!
- Physics run will continue until PSI shutdown in 2027.
 - Goal to reach 6 x 10⁻¹⁴ (x10 on MEG) and potential discovery.

See Talk by M. De Gerone

 $\mu^+ \rightarrow e^+e^+e^-$: Physics

 $\mu^+ \rightarrow e^+e^+e^-$: Physics

 $\mu^+ \rightarrow e^+e^+e^-$: Physics

$\rightarrow e^+e^+e^-$: Mu3e Design

Design:

- High tracker occupancy requires excellent timing and position resolution to select hits belonging to the same track: thin, fast, high-resolution detectors:
 - **175 HV-MAPS channels**
 - \sim 3000 SciFi and \sim 7K Tile TOF channels.
- Method of recurling tracks allows good momentum resolution.
- Superconducting magnet (not shown).

 $\rightarrow e^+e^+e^-$: Mu3e Status

 $N\mu^- \rightarrow Ne^-$: Physics

Monoenergetic electron (1st order)

 $E_e = m_{\mu} - E_{recoil} - E_{1SB.E}$, e.g For Al: E_e = 104.97 MeV

- Coherent = nucleus stays intact.
- Will be smeared by scattering and energy losses

 $N\mu^- \rightarrow Ne^-$: Physics

Caltech

Monoenergetic electron (1st order)

 $E_e = m_{\mu} - E_{recoil} - E_{1SB.E}$, e.g For Al: E_e = 104.97 MeV

- Coherent = nucleus stays intact.
- Will be smeared by scattering and energy losses

Backgrounds:

- Decay in Orbit:
 - 39 % of stopped muons decay :

 $\mu \rightarrow e + \bar{v}_e + v_\mu$

- Radiative Pion Capture:
 - Pions captured into Al nucleus, undergo a radiative process (internal or external), results in: $\gamma \rightarrow e^+e^-$
 - Electrons have energy up to ~pion mass.
- Cosmic Induced:
 - Cosmic muons or secondary particles can be confused for signal is appear to emanate from target.

 $N\mu^- \rightarrow Ne^-$: Physics

Monoenergetic electron (1st order)

 $E_e = m_{\mu} - E_{recoil} - E_{1S B.E}$, e.g For Al: E_e = 104.97 MeV

- Coherent = nucleus stays intact.
- Will be smeared by scattering and energy losses

Strategy:

Caltech

Stop 10¹⁸ muons with << 1 background in signal region:

- Intense muon beam;
- Efficient transportation and collection of muons;
- Pulsed beam to eliminate pions;
- Precise momentum resolution to remove decay backgrounds.

Backgrounds:

- Decay in Orbit:
 - 39 % of stopped muons decay :

 $\mu \to e + \bar{v}_e + v_\mu$

- Radiative Pion Capture:
 - Pions captured into Al nucleus, undergo a radiative process (internal or external), results in: $\gamma \rightarrow e^+e^-$
 - Electrons have energy up to ~pion mass.
- Cosmic Induced:
 - Cosmic muons or secondary particles can be confused for signal is appear to emanate from target.

$N\mu^- \rightarrow Ne^-$: Mu2e Design

Intense muon beam; Efficient transportation and collection;

Production Solenoid:

Caltech

- Pulsed 8 GeV Protons enter, hit Production Target. π produced, decay to μ .
- Graded magnetic field reflects muons to transport solenoid.

Transport Solenoid:

- "S" shape removes line of sight backgrounds.
- Collimators select low momentum, negative muons.

Detector Solenoid:

- Thin aluminum foil target captures the muons.
- Possible signal electrons are detected by a tracker and a calorimeter.
 - Cosmic ray veto covers the whole detector solenoid and half the transport solenoid.

See Talk by A. Gapanenko

$N\mu^- \rightarrow Ne^-$: Mu2e Projections

2027 Run-I:

- 1 x 10⁻¹⁵ 5 σ discovery,
- Single-Event-Sensitivity = 2 x 10⁻¹⁶
- U.L : 6 x 10⁻¹⁶ (90% C.L.)
 - 1000 x current limit.
 - Universe 2023, 9, 54 shows simulated analysis for Run-I.

Total (Run-I + Run-II) end-goal:

- $2 \times 10^{-16} 5\sigma$ discovery,
- Single-Event-Sensitivity = 3×10^{-17}
- U.L : 8 x 10⁻¹⁷ (90% C.L.)
 - 10000 x current limit.

Need to stop O(10¹⁸) muons and have << 1 background event over entire lifetime of the experiment to achieve these numbers!

 $N\mu^- \rightarrow Ne^-$: (Mu2e) Backgrounds

Beam delivery and detector systems optimized for high intensity, pure muon beam – must be "background free":

Туре	Source	Mitigation	Yield (for Run-I only)*
Intrinsic	Decay in Orbit (DIO)	Tracker Design/ Resolution	$0.038 \pm 0.002 \; (stat)^{+0.025}_{-0.015}$ (sys)
Beam Backgrounds	Pion Capture	Beam Structure/ Extinction	(in time) 0.010 \pm 0.002 $(stat)^{+0.001}_{-0.003}$ (sys) (out time) (1.2 \pm 0.001 $(stat)^{+0.1}_{-0.3}$ (sys)) x 10^-3
Cosmic Induced	Cosmic Rays	Active Veto System	0.046 \pm 0.010(stat) \pm 0.009 (sys)

Run-I Sensitivity of Mu2e: Universe 2023, 9, 54.

(Mu2e) Decay in Orbit (DIO) Backgrounds

• Annular tracker: Removes most of DIO (all Michel peak electrons), analyze 10⁵ instead of 10¹⁸ muons.

(Mu2e) Decay in Orbit (DIO) Backgrounds

- Annular tracker: Removes most of DIO (all Michel peak electrons), analyze 10⁵ instead of 10¹⁸ muons.
- However, when decay happens in orbit, exchange of momentum produces recoil tail close to signal region (105 MeV/c).
- To remove remaining backgrounds necessitates < 200 keV/c momentum resolution.

(Mu2e) Straw Tracker: achieving resolution

- Need a high-resolution (< 200 keV/c) momentum measurement to distinguish tail DIO from signal:
 - Minimize energy loss by operating in vacuum and using low mass straws of 15 μ m thickness filled with 80:20 Ar:CO₂;
 - Include extra hit position information with high-angle stereo overlaps and readout on both ends of straw.

Radiative Pion Capture Backgrounds

- Use timing information!
- Pion lifetime 26 ns at rest. Pulsed proton beam (250 ns wide, pulses 1695 ns apart) \rightarrow wait out pion decay.
- In addition, upstream extinction removes out-of-time protons.

Delayed live-gate helps remove pion and beam backgrounds.

Cosmic Induced Backgrounds

- Cosmic-ray muons can initiate 105 MeV particles that appear to emanate from the stopping target.
- Remove using active veto (CRV) + overburden and shielding concrete surrounding the Detector Solenoid.

Active Cosmic Ray Veto system is key to eliminating cosmic induced backgrounds.

$N\mu^- \rightarrow Ne^-$: Mu2e Status (solenoids)

See Talk by A. Gapanenko

$N\mu^- \rightarrow Ne^-$: Mu2e Status

See Talk by A. Gapanenko

What happens next?

How do we understand a signal?

Muons as Probes of New Physics

Muon g-2

Muon CLFV Searches: Motivations

Muon CLFV Searches: Design, Status

What happens next?

Possibilities

<u>What's next???</u> – In either scenario additional searches are motivated. This motivates: Mu2e-II, AMF or PRISM/PRIME.

Next Generation Searches

Proposed multi-decade muon CLFV at Fermilab which would utilize PIP-II and ACE 2GeV ring:

Mu2e-II [see: arXiv: 2203.07569 [hep-ex]] (mid-2030s):

- Similar design to Mu2e, reuses much of the hardware but requires new production target and detector systems.
- Uses pulsed beam as necessary to remove pion backgrounds.
- Lots or R&D on-going including 2 LDRD proposals: tracker and production target.

PRISM/PRIME:

• PRISM uses an FFA to provide monoenergetic muon beam. PRIME is a conversion search.

The Advanced Muon Facility (AMF) [see: arXiv: 2203.08278 [hep-ex]] (mid 2040s):

- A multi purpose muon facility which would search for all three muon CLFV channels at Fermilab.
- Would utilize a fixed field alternating (FFA) gradient synchrotron which would provide:
 - Monoenergetic beam of central momentum 20-40 MeV/c: thin target, minimizing material effects, retaining momentum resolution.
 - Pure muon beam: don't need the pulsed beam and delayed signal window.
 - Can utilize a high Z material to elucidate physics if signal at Mu2e/COMET or Mu2e-II.
 See talk by L. Borrel
 - Has smaller decay branching fraction.
 See my talk on AMF
- R&D required and lots of opportunities to get involved.

Muon g-2:

Discrepancy with SM theory predictions, experiments are making more precise determination, and theorists and
experimentalists are working to resolve the theoretical discrepancies between measurement and each other.

Muon CLFV:

- Muon CLFV channels offer deep indirect probes into BSM and part of an active global CLFV program.
- These experiments have discovery potential over a wide range of well motivated BSM models.
- Three muon CLFV channels form part of a global search for CLFV which will take place this decade.
- Looking further ahead Mu2e-II, PRISM/PRIME and AMF would help elucidate any signal and push to higher mass scales (if no signal).

Thank you for listening! Any Questions?

Back up

Extra things which did not fit

Muons as Probes of New Physics

Muon g-2

Muon CLFV Searches: Motivations

Muon CLFV Searches: Design, Status

What happens next?

Slide from On Kim, UMiss.

Measurement Quantity Anatomy (g-2 FNAL)

Slide from On Kim, UMiss.

Muon g-2 Experiment at FNAL

 $N\mu^- \rightarrow Ne^-$: COMET Design

$N\mu^- \rightarrow Ne^-$: COMET Phase α

- Dedicated primary proton beam-line completed in 2022
- Low intensity proton (Phase-I x0.1) was delivered and commissioned in 2023 with muon transport solenoid but no pion capture solenoid.

Complementarity with collider searches for CLFV

- Less stringent limits in 3rd generation, but here BSM effects may be higher.
- τ LFV searches at Belle II will be extremely clean, with very little background (if any), thanks to pair production and double-tag analysis technique.
- To determine type of mediator:

- Compare muon channels to each other.
- To determine the source of flavor violation:
 - Compare muon rates to tau rates.

Complementarity with collider searches for LFV

Caltech

- Higgs LFV decays arise in many frameworks of New Physics at the electroweak scale such as two Higgs doublet models, extra dimensions, or models of compositeness.
- The $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$ channels provide constraints but conversion searches such as Mu2e provide tightest projected constraints
- Current $\mu \rightarrow e$ conversion implies:

$$\sqrt{|Y_{\mu e}|^2 + |Y_{e\mu}|^2} < 4.6 \times 10^{-5}$$

Mu2e is expected to be sensitive to:

$$\sqrt{|Y_{\mu e}|^2 + |Y_{e\mu}|^2} \sim O(10^{-7})$$

where $|Y_{\mu e}|$ and $|Y_{e\mu}|$ are off-diagnol flavor-violating Yukawa couplings for a 125 GeV Higgs boson i.e. $H \rightarrow \mu e$.

Complementarity with collider searches for LFV

- Higgs LFV decays arise in many frameworks of New Physics at the electroweak scale such as two Higgs doublet models, extra dimensions, or models of compositeness.
- The $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$ channels provide constraints but conversion searches such as Mu2e provide tightest projected constraints
- Current $\mu \rightarrow e$ conversion implies:

$$\sqrt{|Y_{\mu e}|^2 + |Y_{e\mu}|^2} < 4.6 \times 10^{-5}$$

Mu2e is expected to be sensitive to:

 $\sqrt{|Y_{\mu e}|^2 + |Y_{e\mu}|^2} \sim O(10^{-7})$

where $|Y_{\mu e}|$ and $|Y_{e\mu}|$ are flavor-violating Yukawa couplings for a 125 GeV Higgs boson i.e. $h \rightarrow \mu e$.