

Near Detector Technologies (A WG6 Teaser Talk)

Thorsten Lux

Why do we need Near Detectors?

 $\delta_{\rm CP}$ values excluding sin $\delta_{\rm CP}$ =0 (%) 80 E-3σ HK Improved 5σ 70 systematics **60**E 50F 30 20 T2K-level Statistics only Improved syst. $(v_e/\overline{v}_e \text{ xsec. error } 2.7\%)^{-1}$ 10 systematics T2K 2018 syst. $(v_a/\overline{v}_a \text{ xsec. error } 4.9\%)$ Hyper-K preliminary HK Years (2.7E21 POT 1:3 ν:ν) True normal ordering (known) $\sin^2(\theta_{13}) = 0.0218 \sin^2(\theta_{23}) = 0.528 |\Delta m_{32}^2| = 2.509\text{E-3}$

See talk by S. Dolan

Sensitivity to exclude CP conserving values for δ_{CP}

Can delay physics results **by several years**. **Or prevent them altogether!**

But we luckily have Near Detectors!

⇒ Systematic uncertainties are the big enemy!

Institute for High

Energy Physics

LBNO Concept

- Huge masses of 10s of ktons
- Often underground
- Oscillated neutrino spectrum

- Constraints on neutrino flux before oscillation
- Neutrino cross sections
- Direction of neutrino beam

- Proton synchrotron (30-120 GeV)
- Target to produce mesons
- Magnetic system to select polarity
- Decay tunnel to let mesons decay and produce neutrinos

LBNO Concept

We need the **oscillation probability** from event rates with high precision \Rightarrow From the **oscillation probability** we extract then the oscillation parameters

LBNO Concept

See talk by E. Miller

- Near Detector contributes to reduce uncertainty from neutrino flux and cross-sections
- σ^{ND} and σ^{FD} (ideally by measurement) from ND
- Crucial to understand relation between reconstructed and true neutrino energy

Neutrino Fluxes: Energy Spectrum

Institute for High Energy Physics

- Important to understand what neutrino fluxes one can expect
- Are the detectors on-axis or off-axis?
- On-axis: Wide neutrino energy spectrum
- Off-axis: Narrower neutrino energy spectrum peaking at lower energies
- \Rightarrow Neutrino beams are very wide and covering the whole experimental area
- \Rightarrow Measuring at different angles helps to deconvolute flux and cross-section

- Naïve picture: Start with pure ν_{μ} beam characterized at ND and measure oscillated beam containing ν_{μ} and ν_{e} at FD
- Reality: Production process of neutrino beam results in contamination
- Fractions depends on several experimental aspects: proton energy, target geometry, horn system, beam angle, ...
- Knowledge important for experiment sensitivity
- Enables to measure cross-sections also for $\nu_{\rm e}$

Neutrino fluxes: Intensity/Beam Power

- Intensity of neutrino flux impact on ND design
- Higher flux means more statistics opening new opportunities
- Beam power can be increased by more spills or more neutrinos per spill
- More neutrinos per spill implies more pile up background (also from out of fiducial volume interactions)
- Impressive increase in intensity and neutrinos per spill over last decades:
 - Past: K2K => 1.4 x 10¹² p.o.t.
 - Current: T2K => 2.65 x 10¹⁴ p.o.t.
 - Next generation: DUNE => 7.5×10^{13} p.o.t. HK => 3.2×10^{14} p.o.t.

\Rightarrow ND technologies with smaller N_{target} become interesting!

See talk by T. Sekiguchi and A. Burleigh

Cross-Sections

At neutrino energies relevant for LBNO, there are 4 interaction modes:

Depend on target material => ND should provide cross-sections for FD target!

- Interaction not on free nucleons
- Nuclear effects/ Final State Interactions (FSI) can alter the event observables
- Effects depend on target material
- More relevant for low neutrino energies
- ND provides insight in FSI

The oscillation parameters depend on the true neutrino energy => precise knowledge of energy response function $T(E_{rec}, E_{true})$ crucial.

1) Kinematic energy reconstruction (suitable for true QE events):

$$E_{QE} = \frac{m_p^2 - m_\mu^2 - (m_n - E_B)^2 + 2E_\mu(m_n - E_B)}{2(m_n - E_B - E_\mu + p_\mu^z)} \qquad \begin{array}{l} \text{Reque} \\ \text{kiner} \\ \text{outg} \end{array}$$

Requires only kinematics of outgoing muon

2) Calorimetric energy resolution:

$$\begin{split} E_{\nu}^{\mathrm{cal}} &= \epsilon_n + E_{\ell} + \sum_i (E_{\mathbf{p}'_i} - M) + \sum_j E_{\mathbf{h}'_j} & \mathsf{n} \\ & & & \downarrow^j & & \downarrow^j \\ & & & \mathsf{Kinetic\ energy\ of} & & \mathsf{Total\ energy\ of} \\ & & \mathsf{outgoing\ nucleons} & & \mathsf{outgoing\ mesons} \end{split}$$

Problem: Sums include neutral particles (neutrons, π0) which might escape undetected

Far Detector Technologies

Liquid Argon

- LAr TPCs
- DUNE
- 10 kton per module (up to 4 in total)
- Baseline: 1300 km
- Target: Ar

Scintillator

- Bar tracker
- NOvA
- 14 kton
- Baseline: 810 km
- Target: CH

Water

- Water Cherenkov detectors
- SK and HyperK
- 22.5 and 190 kton
- Baseline: 300 km
- Target: H₂O

- $(v_e/v_\mu)/(v_e/v_\mu)$ cross-section ratio
- Understanding the nuclear effects
- Energy response function T(E_{rec}, E_{true})
- FD target cross-section
 - Flux+cross-sections at various off-axis positions with the same detector
 - Wrong-sign contamination in the beam
- Total intensity and direction of the neutrino beam
- Large target mass
- Fine granularity
- Magnet
- Same target as in FD
- Low detection threshold
- Good PID and momentum reconstruction
- Detect neutral particles
- Moveable
- 4π acceptance with high efficiency

What we need:

What we

want:

- $(v_e / v_\mu) / (v_e / v_\mu)$ cross-section ratio
 - Understanding the nuclear effects
 - Energy response function T(E_{rec}, E_{true})
- FD target cross-section
 - Flux+cross-sections at various off-axis positions with the same detector
 - Wrong-sign contamination in the beam
- Total intensity and direction of the neutrino beam
- Large target mass
- Fine granularity
- Magnet
- Same target as in FD
- Low detection threshold
- Good PID and momentum reconstruction
- Detect neutral particles
- Moveable
- 4π acceptance with high efficiency

Hardly possible that one ND technology provides all this!

⇒ Selection of target detector technologies on the next slides

What we need:

What we

want:

2D Scintillator Tracker

- Plastic/liquid scintillator excellent choice as target (several tons)
- Good light yield
- Excellent timing information
- Classical approach:
 - Scintillator bars with WLS fiber
 - Signal read by MPPC provides information about deposited charge
 - Alternating layers provide either xz or yz information of tracks
 - Freely choosable bar dimensions

2D Scintillator Tracker

- Very successfully used in K2K, T2K and NOvA
- Easy to construct
- Drawbacks:
 - Both views are independent and 3D reconstruction might be ambiguous
 - Relative high track detection threshold (at least 3 hits in each view)

2D

WFact 2024

 High angle tracks (along one bar) not/badly reconstructed

3D Scintillator Tracker

- How to overcome the drawbacks of the 2D tracker?
- Go 3D using cubes instead of bars and 3 WLS fibers per cube!
- "Minor" issues (for 2 ton detector):
 - Instead of 10,000 bars (1x1x200 cm³), one needs 2,000,000 cubes (1x1x1cm³)!
 - Readout channels go up from 10,000 to about 60,000!
 - Very stringent requirements on tolerances and alignment of the different components
- But impressive advantages as ND target

3D Scintillator Tracker: SuperFGD

- Built for T2K ND280 Upgrade and installed in October 2023
- 2M optically isolated cubes produced and 6M holes precisely drilled
- Assembled in 56 layers with fishing lines
- Final assembly in box with WLS fibers

SuperFGD: Production + Assembly

- Production of cubes: ~100k per month
- Cube preparation:
 - 190 cubes for one string
 - 182 strings mounted to 1 layer (40k cubes)
 - ~20 months for all layers

(vii) Horizontal fibers assembly

(viii) Wall MPPCs assembly

(xi) LED calib. modules assembly (xii) Light barrier/cables assembly

(ix) Vertical fibers assembly

(x) Top MPPCs assembly

(i) Support system assembly

(iv) Stop panels removed

Dec. 23

(v) Box closure

(ii) First cube layer assembly

(iii) All 56 layers assembled

(vi) Transfer to new support

- Layer by layer installed carefully aligned with 56k holes in box
- Very slow and labour intensive assembly work
- ~6 months to complete assembly

SuperFGD: Performance

- First data with neutrino beam taken
- Much lower threshold for protons and much higher efficiency
- Allows detecting neutrons (tested with neutron testbeam) with about 50% efficiency
- Neutron energy reconstruction via TOF measurement possible

See talk by T. Doyle

HyperFGD R&D

See talk by Umut Kose

How to build HyperFGDs (SuperFGD++)?

 \Rightarrow You do not want to handle 10M cubes and drill 30M holes by hand ...

- \Rightarrow 3DET collaboration is developing 3D printing of plastic scintillator
- \Rightarrow Prototype has been printed

 \Rightarrow Performance similar to standard cube production

Plastic Scintillator Detector: WAGASCI

- Scintillators and WLS fibers to surround a voxel filled with water
- 80% H_2O and 20% CH as target
- Approach allows to measure cross-section on H₂O by subtracting known CH cross section (or to run without water for some runs)

- Drawbacks:
 - Light yield limited
 - Smaller voxel size, imply smaller fraction of H_2O
- Detector of 700 kg operated at J-PARC at 1.5 degree off-axis
- First physics results presented in 2020
- R&D on similar concepts using fibres instead of scintillator panels ongoing

First event

Institute for High Energy Physics

Plastic Scintillator Detector: INGRID

- Neutrino beam stability and direction crucial to control systematic uncertainties
- Simple but efficient approach: Sandwich of a lot of iron interleaved with tracking layers
- Oriented as cross allows reconstructing distribution of interaction horizontally and vertically \Rightarrow beam profile
- No vertex activity information but crucial for data taking in T2K

Plastic Scintillator Detector R&D

- Development at ETH Zurich of CMOS SPAD array imaging sensors (goal: 1 cm²)
- Each pixel is a readout channel
 - Position of each pixel (20 μm)
 - Single pixel sub-ns resolution
 - Monolithic: digitization on chip

Cheap solution for read out scintillating fibres \rightarrow reconstruct protons \geq 150 MeV/c

PLATON:

See talk by T. Dieminger

• 3D photographs of ν interactions in scintillator

• Potential for sub-mm spatial resolution

NuFact 2024

Nuclear Emulsion Detector: NINJA

17.9 mm

26

- Historical detector providing e.g. first evidence of Kaon into 3 pion decay
- Adaptation of classical photography ⇒ biggest drawback: film needs to be extracted, developed and scanned
- Biggest advantage: excellent point resolution defined by grain size (< μm resolution)
- Sampling approach: emulsion films interleaved with target material

Nuclear Emulsion Detector: NINJA

- Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator (NINJA)
- Operated at T2K beamline (next to WAGASCI)
- Started with Fe target, more recently with H₂O
- Excellent spatial resolution allows to distinguish if interaction happened in emulsion or target
- Low detection threshold
- R&D ongoing to improve performance => e.g. thicker emulsion layer to improve angular resolution

Liquid/Gaseous Detectors: LAr TPC

- LAr TPC technology has been developed for more than 20 years
- Provides bubble chamber like images of event with low detection threshold
- Possible to have large, completely sensitive detection volumes
- Very interesting technology for ND if FD also used this technology (DUNE)
- But some drawbacks:
 - Very slow detector with readout windows of about 500 μs per m of drift
 - Cryogenic system and electronics needed
 - Challenging to have magnetized/moveable detector

Liquid/Gaseous Detectors: LAr TPC

- Impressive R&D work towards a LAr TPC for ND ongoing since many years
- Biggest Challenge to overcome: Pile-up!
- For DUNE with 130 ton of LAr and 1.2 MW beam, about 50 events are expected during one spill
- Complicates event reconstruction
- Collaboration works on interesting ideas:
 - Pixel instead of classical wire readout including development of dedicated ASIC for LAr
 - Independent modules each with photon detection system

Liquid/Gaseous Detectors: LAr TPC

- Several prototypes were built
- Millions of cosmics taken with large module 0 from 2021 to 2023
- 2x2 NDLAr demonstrator currently taking neutrino data in MINERvA pit (330k pixels charge readout + light detection system)
- Important step towards final NDLAr TPC

See talks by A. Cudd and S. Kumaran

Upstream MINER ν A Planes

Liquid/Gaseous Detectors: HP TPC

PTPC Emulsion detector _____ (interaction in emulsion)

- Gaseous TPCs would allow to go to even lower detection thresholds than LAr
- Low density implies low statistics => increase pressure to 10 to 15 bar + profit from high power beams
- Ideal to study nuclear effects relevant for neutrino interactions
- Possibly same detector could be used with different gases => different targets
- HP TPC R&D ongoing since many years for several applications (first TPC in 1979 was a HP TPC)
- HP TPC R&D is also part of the DRD1 collaboration
- Atm TPC also used for PID \Rightarrow see talk G. Collazuol

31

Liquid/Gaseous Detectors: HP TPC

- R&D carried out at many institutes
- UK-led collaboration built large prototype and tested at T10 beamline at CERN
- Images of events taken by 4 CCD cameras behind the cathode
- Tested light yield with various gas mixtures

Liquid/Gaseous Detectors: HP Hydrogen TPC

- Neutrinos were studied in hydrogen bubble chambers
- Pure hydrogen TPC would be interesting
- First was built 1984 (Nuclear Instruments and Methods in Physics Research 225 (1984) 550-556)
- More recently the MuCap experiment at PSI uses a hydrogen TPC at 10 bar to study muon capture
- Several challenges:
 - Safety
 - Scaling to larger volumes
 - Low density of H2 => 20 times less statistics than Ar
 - Few electrons per cm for MIPs => small signals

 \Rightarrow Lots of interesting R&D possible (could be also for other technologies allowing H as target)

Water Cherenkov Detectors

- Water Cherenkov detectors are excellent as FD (SK/HK)
- Some drawbacks as ND:
 - High detection threshold
 - No vertex activity information
 - Particles often not contained (much smaller than FD)
 - Limited size affects ring development
- But also advantages:
 - Cost effective for large masses => interesting for v_e measurements
 - Same target material
- K2K had 1 kton WC detector
- Significant R&D work ongoing for Intermediate Water Cherenkov Detector (IWCD) for HK including testbeam at CERN (WCTE)

T2K/HK Case

Conclusions

Institute for High Energy Physics

- Near detectors are crucial for success of LBNO experiments
- Especially true for DUNE and HK which will be systematic uncertainties limited
- Reduction of systematic uncertainties from about 15-20% to about 3-6%
- Achieved by development of large variety of excellent ND technologies
- There is not "the-one-and-only" ND technology but the combination of different ones is the key
- Possibly opens possibilities for new BSM studies
- Still room for a lot of R&D and new ideas!
- Join the WG6 sessions for much more detailed talks

- NINJA:
 - Tomohiro Hayakawa, Sep 18, 2024, 12:22 PM, WG2
- SuperFGD:
 - Tristan Doyle, Sep 19, 2024, 2:05 PM, WG6
- LAr TPC:
 - Sindhujha Kumaran, Sep 19, 2024, 4:35 PM, WG6
 - Andrew Cudd, Sep 19, 2024, 4:39 PM
- TPC:
 - Gianmaria Collazuol, Sep 19, 2024, 5:15 PM
- Plastic Scintillators:
 - Matthew Franks, Sep 20, 2024, 3:25 PM
 - Till Dieminger, Sep 20, 2024, 3:05 PM

Publications

- HP-TPC:
 - Instruments 2021, 5(2), 22
 - JINST 19 (2024) 06, P06018
 - Phys. Rev. D 102, 033005
 - arXiv:1910.06422v1 [physics.ins-det] 14 Oct 2019
 - CERN-SPSC-2017-030 / SPSC-P-355
- MuCap:
 - Nucl.Instrum.Meth.A 628 (2011) 199-203
 - SciPost Phys. Proc. 5, 017 (2021)
- Plastic Scintillators:
 - IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005
 - 2020 JINST 15 P12003
 - Physics Letters B, Volume 840, 10 May 2023, 137843
- NINJA:
 - https://j-parc.jp/researcher/Hadron/en/pac 1801/pdf/P71 2018-4.pdf
 - Prog. Theor. Exp. Phys. 2022 063H01
- WAGASCI:
 - Journal of Physics: Conference Series 1468 (2020) 012152
 - arXiv:1610.06367v1 [physics.ins-det] 20 Oct 2016
- ND LAr TPC:
 - arXiv:1808.02969v3 [physics.ins-det] 16 Sep 2018

small selection ...

Liquid/Gaseous Detectors: HP TPC R&D

- Aim: gas mixture enriched in hydrogen
- Transverse Kinematic Imbalance analysis to select events on free protons => no nuclear effects
- Problem is pressure vessel: all detectors (HP TPC, ECAL, ...) must be inside => conceptual design for DUNE

There is not "the one" ND Technology

- One technology is not covering the full wish list
- ND complexes normally consist of set of complementary detector technologies
- Plans for DUNE ND complex good example

