### Neutrino activities at CERN

Alexey Boyarsky NuFact 2024

September 20, 2024

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Beyond the Standard Model



### **Standard Model of Elementary Particles**

### Still missing:



Aleksey Boyarsky

Neutrino activities at CERN

September 20, 2024 2/27

э

- Neutrino oscillations — indication of **new physics**.



- LHC during high luminosity phase and FCC will collect large integrated luminosity can probe light new physics below  $\sim 100 \text{ GeV}$
- LHC/FCC are not suitable for probing NP at the **GeV** scale because of large decay length  $\sim 1/m^n \times \langle E_{\rm NP} \rangle/m$  (n = 1-5 depending on the model)

Aleksey Boyarsky

Neutrino activities at CERN

・ロト ・ 同ト ・ ヨト ・ ヨト



#### on behalf of the SHiP Collaboration of 38 institutes from 15 countries and CERN

#### **BDF/SHIP** references to reports/publications

- 17 submitted to SPSC and ESPPSU2020
- 26 on the facility development
- 37 on the detector development
- 11 on physics studies
- 20 on theory developments dedicated to SHiP
- 20 PhD thesis, a few more in pipeline

#### BDF/SHiP approved by the CERN RB in March 2024

#### **Recent documents:**

- Proposal, BDF/SHiP at the ECN3 high-intensity beam facility, CERN-SPSC-2023-033
- ✓ Letter of Intent, BDF/SHiP at the ECN3 high-intensity beam facility, CERN-SPSC-2022-032

#### Neutrino activities at CERN

September 20, 2024 4/27



- The SHiP experiment: a beam dump experiment with huge intensity  $N_{\rm PoT} = 6 \cdot 10^{20}$
- Contains Scattering and Neutrino Detector (SND) and Hidden Sector Decay Spectrometer (HSDS)
- Both are important for neutrino physics

Aleksey Boyarsky

Neutrino activities at CERN

September 20, 2024 5/27

### HSDS:

- Large  $50 \times 5 \times 10$  m<sup>3</sup> on-axis decay volume: optimal placement to maximize the event yield with new physics



- PID: EM calorimeter, magnetized spectrometer
  sensitivity to many new particles
- Background is reduced to a negligible level

| Portal models                 | Final states                             |
|-------------------------------|------------------------------------------|
| HNL                           | <i>l*π-, l*</i> <b>K</b> <i>', l*</i> ρ- |
| Vector, scalar, axion portals | <i>l*l-</i>                              |
| HNL                           | <i>l*lν</i>                              |
| Axion portal                  | γγ                                       |

イロト イヨト イヨト イヨト

September 20, 2024 6/27

## New physics at SHiP II



- HDSC will explore the parameter space of **new physics** by orders of magnitude

Aleksey Boyarsky

Neutrino activities at CERN

September 20, 2024 7/27

- 22

## New physics at SHiP III



- HDSC will explore the parameter space of **new physics** by orders of magnitude

Aleksey Boyarsky

Neutrino activities at CERN

September 20, 2024 8/27

э

### Example: Neutrino Portal and BSM problems. I

Neutrino oscillation can be described by an effective dimension-5 operator (Weinberg operator). ⇒ new particles (e.g. HNL) are needed:



• Naïvely, to explain neutrino oscillations, HNL should interact with SM through tiny mixing angles  $U_{\alpha} \sim F_{\alpha}/M_N$  of order

$$U_{\text{seesaw}}^2 \equiv \frac{\sqrt{\Delta m_{\text{atm}}^2}}{M_N} = 5 \cdot 10^{-11} \frac{1 \text{ GeV}}{M_N} \tag{1}$$

• But we need at least **two HNLs**: much larger coupling  $U^2 \gg U_{\text{seesaw}}^2$  if HNLs have approximate symmetry

Aleksey Boyarsky

Neutrino activities at CERN

September 20, 2024 9/27

### Example: Neutrino Portal and BSM problems. II



To quantify how fine-tuned such HNLs are, one can define the  $\xi$ -parameter

$$\xi = \frac{\sqrt{\Delta m_{\rm atm}^2}}{M_i U_i^2} = \frac{U_{\rm seesaw}^2}{U^2} \tag{2}$$

イロト イヨト イヨト イヨ

Accelerator experiments do not have enough sensitivity to cover so small mixing angles for light.

September 20, 2024 10/27

### Example: Neutrino Portal and BSM problems. III



SHiP would allow us to probe many orders of magnitude larger  $\xi$  than the past experiments, approaching the most interesting part of the parameter space!

If we found an HNL-like signal with  $\xi \ll 1$ , can we reveal neutrino nature?

Neutrino activities at CERN

September 20, 2024 11/27

### Neutrino masses from two HNLs

- Neutrino masses can be explained with **only two** HNLs.
- In symmetric regime ( $\xi\ll 1),$  the seesaw relation limits the possible ratios  $U_e^2:U_\mu^2:U_\tau^2$
- Model: arbitrary total  $U^2$  and mixing ratios  $x_{\alpha} = U_{\alpha}^2/U^2$



Measure mixing ratios  $x_{\alpha}$   $\downarrow$ Test two HNLs hypothesis

イロト イヨト イヨト イヨト

September 20, 2024 12/27

### Measure relevant branching ratios I



|    | decay mode                  | mixing                      | $\Gamma_{\alpha} \times 10^{13},  \text{GeV}$ |
|----|-----------------------------|-----------------------------|-----------------------------------------------|
| 0) | $N \rightarrow 3\nu$        | $U_{e,\mu,\tau}^2$          | 1.7                                           |
| 1) | $N \rightarrow \nu ee$      | $(U_e^2, U_{\mu,\tau}^2)$   | (1.0, 0.2)                                    |
| 2) | $N \rightarrow \nu e \mu$   | $U_{e,\mu}^2$               | 1.7                                           |
| 3) | $N \rightarrow \nu \mu \mu$ | $(U^2_{\mu}, U^2_{e,\tau})$ | (1.0, 0.2)                                    |
| 4) | $N \to \nu h^0 (\text{NC})$ | $U_{e,\mu,\tau}^2$          | 2.5                                           |
| 5) | $N \to eh^+ (CC)$           | $U_e^2$                     | 5.0                                           |
| 6) | $N \to \mu h^+ (CC)$        | $U^2_{\mu}$                 | 5.0                                           |

- 1  $e/\mu$ -coupling probed directly by  $ee+eh/\mu\mu+\mu h$
- 2  $\tau$ -coupling is probed *indirectly* via total normalization ( $e\mu$ +h NC)

#### Aleksey Boyarsky

#### Neutrino activities at CERN

September 20, 2024 13/27

- 32

### Measure relevant branching ratios II





Aleksey Boyarsky

Neutrino activities at CERN

September 20, 2024 14/27

3





Aleksey Boyarsky

Neutrino activities at CERN

September 20, 2024 15/27

- 22

## Neutrino physics: SHiP as $\tau\text{-neutrino factory I}$



- SND@SHiP: emulsion-based technology (in current setup, electronic readout studies in progress)
- Huge sample of tau neutrinos available at BDF/SHIP via  $D_s \rightarrow \tau \nu_{\tau}$



Neutrino activities at CERN

Table 1. Expected neutrino flux for different neutrino flavors at the beam dump (left) and charged-current deep-inelastic interactions in the Scattering Spectrometer (right). 2  $\times 10^{20}$  protons on target were assumed.

|                             | $\langle E \rangle [GeV]$ | Beam dump            | $\langle E \rangle [GeV]$ | CC DIS interactions |
|-----------------------------|---------------------------|----------------------|---------------------------|---------------------|
| $N_{\nu_e}$                 | 4.1                       | $2.8 \times 10^{17}$ | 59                        | $1.1 \times 10^{6}$ |
| $N_{\nu_{\mu}}$             | 1.5                       | $4.2 \times 10^{18}$ | 42                        | $2.7 \times 10^{6}$ |
| $N_{\nu_{\tau}}$            | 7.4                       | $1.4 	imes 10^{16}$  | 52                        | $3.2 	imes 10^4$    |
| $N_{\overline{\nu}_e}$      | 4.7                       | $2.3 	imes 10^{17}$  | 46                        | $2.6 \times 10^5$   |
| $N_{\overline{\nu}_{\mu}}$  | 1.6                       | $2.7 	imes 10^{18}$  | 36                        | $6.0 	imes 10^5$    |
| $N_{\overline{\nu}_{\tau}}$ | 8.1                       | $1.4 \times 10^{16}$ | 70                        | $2.1 \times 10^4$   |



### Rich neutrino physics

- **1** LFU in neutrino interactions:  $\sigma_{\text{stat+sys}} \sim 3\%$  accuracy in ratios:  $\nu_e/\nu_\mu$ ,  $\nu_e/\nu_\tau$ ,  $\nu_\mu/\nu_\tau$
- **2** DIS cross-section from  $E_{\nu} \lesssim 10 \,\text{GeV}$  (input to DUNE) to ~ 100 GeV
- **3** Measuring structure functions  $F_4$ ,  $F_5$  (only accessible with tau neutrinos)

[C.Albright and C.Jarlskog, NP B84 (1975)]

- SND@SHiP technology is currently tested at LHC

Aleksey Boyarsky

Neutrino activities at CERN

## Forward LHC experiments I

- Forward LHC experiments: fill the gap in the unprobed neutrino energy range  $E_{\nu} = 400 \text{ GeV} - 10 \text{ TeV}$
- Two experiments:
  - SND@LHC
  - FASER $\nu$
- Both use the emulsion detector technology



Neutrino activities at CERN

### Forward LHC experiments II



- SND@LHC and FASER $\nu$ : located in the opposite directions relative to ATLAS IP
- Complementary  $\eta$  coverage: SND@LHC covers 7.2 <  $\eta$  < 8.4, FASER $\nu$   $\eta$  > 8.8



イロト イヨト イヨト イヨト

Neutrino activities at CERN

September 20, 2024 19/27

3

## Forward LHC experiments III



*Credits: R. Biswas, ICHEP* Collected data at SND@LHC:

- 32 observed  $\nu_{\mu}$  events for the signal estimate from simulation  $19 \pm 4(\text{syst}) \pm 4(\text{stat})$
- 6 observed  $\nu_e$  events  $(0\mu)$  with the signal simulation estimate of 4.9 events
- -3 observed  $3\mu$  events (muon trident interactions)

## Forward LHC experiments IV



Credits: S. Dmitrievsky, ICHEP Collected data at FASER $\nu$ :

- First ever observation of  $\nu_e$  at the LHC Phys.Rev.Lett.133.021802 (2024)
- $-4 \nu_e$  and  $8 \nu_\mu$  CC events observed
- $-153^{+12}_{-13}$  neutrino scattering observed using the main FASER detector

イロト イヨト イヨト

- Forward Physics Facility: a set of experiments that would explore various scenarios with new physics at HL-LHC
- Includes upgraded  $FASER\nu 2$ and AdvSND.
- Problems with emulsion due to high muon flux  $\Rightarrow$  rely on electronic detectors



Credits: A. Barr, ICHEP

Aleksey Boyarsky

Neutrino activities at CERN

September 20, 2024 22/27



### Credits: J. Shi, ICHEP

- ProtoDUNE: full-scale prototype of DUNE. LAr TPC technology allows low detection thresholds
- Two detectors were constructed and installed in the CERN Neutrino Platform at the end of EHN1: NP02 (ProtoDUNE-VD) and NP04 (ProtoDUNE-SP/ProtoDUNE-HD)

## Current and future neutrino experiments at CERN

• **ProtoDUNE** (2018-)

Test of the prototype detector for the DUNE experiment

• **FASER** $\nu$  & **SND@LHC** (2022-)

Study neutrino interactions at TeV energies and meson production in far-forward direction. Different technology and focus on bottom/charm hadrons

| Generators               |                | $FASER\nu$            |                               | SND@LHC                         |                       |                               |                                 |
|--------------------------|----------------|-----------------------|-------------------------------|---------------------------------|-----------------------|-------------------------------|---------------------------------|
| light hadrons            | heavy hadrons  | $\nu_e + \bar{\nu}_e$ | $\nu_{\mu} + \bar{\nu}_{\mu}$ | $\nu_{\tau} + \bar{\nu}_{\tau}$ | $\nu_e + \bar{\nu}_e$ | $\nu_{\mu} + \bar{\nu}_{\mu}$ | $\nu_{\tau} + \bar{\nu}_{\tau}$ |
| SIBYLL                   | SIBYLL         | 901                   | 4783                          | 14.7                            | 134                   | 790                           | 7.6                             |
| DPMJET                   | DPMJET         | 3457                  | 7088                          | 97                              | 395                   | 1034                          | 18.6                            |
| EPOSLHC                  | Pythia8 (Hard) | 1513                  | 5905                          | 34.2                            | 267                   | 1123                          | 11.5                            |
| QGSJET                   | Pythia8 (Soft) | 970                   | 5351                          | 16.1                            | 185                   | 1015                          | 7.2                             |
| Combination (all)        |                | $1710^{+1746}_{-809}$ | $5782^{+1306}_{-998}$         | $40.5^{+56.6}_{-25.8}$          | $245^{+149}_{-111}$   | $991^{+132}_{-200}$           | $11.3\substack{+7.3 \\ -4.0}$   |
| Combination (w/o DPMJET) |                | $1128^{+385}_{-227}$  | $5346^{+558}_{-563}$          | $21.6^{+12.5}_{-6.9}$           | $195^{+71}_{-61}$     | $976\substack{+146 \\ -185}$  | $8.8^{+2.7}_{-1.5}$             |

### [2105.08270]

- SHiP (2030+) Study  $\tau$  (anti)neutrinos + search for new physics
- **FASER** $\nu$ **2** & **AdvSND** (proposal, HL-LHC) Successors to the current detectors, with  $\times 100$  more statistics

September 20, 2024 24/27

# Backup

Aleksey Boyarsky

Neutrino activities at CERN

September 20, 2024 25/27

・ロト ・回ト ・ヨト ・ヨト ・ヨー うへで

## Probing baryon asymmetry of the Universe

- Same HNLs that are responsible for neutrino oscillations can generate *baryon asymmetry of the Universe*
- Baryon asymmetry also demands at least 2 HNLs with almost degenerate masses:  $\Delta M = |M_1 - M_2| \ll M_1, M_2$ and have the same mixing angles



### Can we understand that we observed such HNLs?

September 20, 2024 26/27

## Distinguishing two HNLs?

- Two HNLs with similar masses  $\Rightarrow$  HNL oscillations
- Ratio of probability of lepton number violating (LNV) and conserving (LNC) processes:

$$\frac{P_{\rm LNV}}{P_{\rm LNC}} \sim \frac{1 - \cos \Delta M \tau}{1 + \cos \Delta M \tau} \qquad \tau - \text{HNL proper time} \qquad (3)$$

LNV

 $\langle E_{l_{\beta}, \text{LNV}}^{(H)} \rangle \gtrsim \langle E_{l_{\beta}, \text{LNC}}^{(H)} \rangle$ 

• Kinematics of LNV and LNC decays are statistically different



✓ SHiP can resolve HNL oscillations [1912.05520] ✓ Needs  $\mathcal{O}(10^3)$ events – middle of the exploration region ✓ Oscillation period:  $2\pi/\Delta M$ 



Aleksey Boyarsky

Neutrino activities at CERN

September 20, 2024 27/27