

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Short-Baseline Neutrino Experiments

Minerba Betancourt (Fermilab) 20 September 2024

NuFact 2024

Introduction

- Three flavors $V_{e,}\,V_{\mu}\,and\,\,V_{\tau}$ have been observed
- The two mass differences and the three mixing angles have been measured by observing neutrino oscillation from solar, reactor, atmospheric and accelerator neutrino experiments

• A sterile neutrino with mass $\sim 0.1-100 \text{ eV}^2$ would explain the anomalous results

	GALLEX/SAGE anomaly	Source – e capture	ve disappearance	2.8 s
	Reactors anomaly	b decay	v ⁻ e disappearance	3.0 s
 Is there a fc Several anomal 	Each possibly explained by sterile neutrino states driv	non standard ving oscillations		
experiments at a	at $\Delta m^2_{new} \approx 1 \text{ eV}^2$ and sm	nall sin ² ($2\theta_{new}$)		\mathbf{v} ?
 These anomalie and non-weakly 			electron muon neutrino neutrino	tau neutrino
Experime LSND anomaly ²	Minerba Betancourt			Fermila
MiniBooNE anomaly	SBL accelerator	v _µ → v _e	4.5 σ	
		$\bar{v}_{\mu} \rightarrow \bar{v}_{e}$	2.8	σ
GALLEX/SAGE	Source – e	v _e disappeara	nce 2.8 σ	
Reactors anomaly	β decay	ve disappeara	ance 3.0	σ
• Each possibly expla	ined by non standarc	l sterile neutrino	$(m_4)^2$	\mathbf{v}_4 m ² (eV
states driving oscill $sin^2(2\theta_{new})$	ations at $\Delta m^{2}_{new} \approx I$	eV ² and small	$(m)^2$	1D
• Is there any addition neutrino oscillation	onal physics beyond th n?	ne 3- flavor mixin	$g \qquad (m_3)^2 \qquad \Delta m_{23}^2 \qquad Atmos(m_2)^2 \qquad \Delta m_{12}^2 \qquad Solar(m_1)^2 \qquad m_{lightest}^2$	spheric v_3 v_3 v_2 v_2 v_1 v_2 v_1 v_2 v_1
			2	Fermilab

Short Baseline Oscillation Search

- Using neutrinos from π —> μ decay at rest
- LSND collaboration observed 3.8 sigma excess over SM prediction
- Saw an excess of: 87.9 ± 22.4 ± 6 events

MiniBooNE Experiment

• Designed to test LSND signal: search for V_{μ} > V_e e^-

e at L/E ~I

 MiniBooNE used neutrinos from Booster at Ferning at a mineral oil Cherenkov detector

• These anomalies provide hints to indicate there is a fourth an interacting sterile type of neutrino

Searches with JSNS²

Minerba Betancourt See more details in New Results and Status of JSNS² by Dongha Lee

First KDAR Missing Energy Measurement

- JSNS² released the first measurement of the missing energy due to nuclear effects in mono energetic muon neutrino charged-current interactions on carbon
 - Neutrinos from K⁺—> $\mu^+\nu_\mu$ decay-at-rest (E_{$\nu\mu$}=235.5 MeV)
- The missing energy is sensitive to nuclear effects (Fermi momenta, final-state interactions and nucleon separation energy)
- Differential cross section measurement compared to several neutrino event generators/model predictions

https://arxiv.org/abs/2409.01383

Searches with Neutrino-4

- Neutrino-4 experiment located close to SM-3 reactor in Dimitrovgrad (Russia)
 - The SM-3 is a 90 MW research reactor with a compact core 35x42x42 cm³ using highly enriched U fuel
- Neutrino-4 published results in 2020: 2.9 σ tension with the three flavor oscillation model

$$\Delta m_{14}^2 = (7.3 \pm 1.17) \,\mathrm{eV}^2$$

$$\sin^2 2\theta = 0.36 \pm 0.12_{stat}(2.9\sigma)$$

Several Experiments Searching for Sterile Oscillation

Many reactor experiments at very short baselines!

Joint analysis started late 2023 between DayaBay, Prospect and Stereo

BEST combined with others

Short Baseline Program at Fermilab

10

10

φ_ν [m⁻² POT⁻¹] 10 10

10⁻¹

10-

 $\phi_{\nu} / \phi_{\bar{\nu}}$

• Three liquid argon Time Projection Chambers (TPC) detectors at different baselines from Booster Neutrino Beam searching for sterile neutrino oscillations

Short Baseline Program (SBN)

- Three LArTPC detectors at different baselines from Booster Neutrino Beam searching for sterile neutrino oscillations
 - Measuring both appearance and disappearance channels
- Measure neutrino cross sections on liquid argon
- Same detector technology and neutrino beamline: reducing systematic uncertainties to the % level
 - A detection technique providing an excellent neutrino identification to reduce the backgrounds

Liquid Argon TPC Detection Technique

- Tracking device: precise 3D event topology with ~mm³ resolution for ionizing particle
- Scintillation light detected by PMTs to provide event time and trigger
- Charged particles from neutrino interactions ionize the LAr, production ionization electrons drifting in 1 ms toward readout sense wires

- Powerful particle identification by dE/dx vs range
- Remarkable e/γ separation: calorimetric capabilities can distinguish e from γ at the shower start

μ MićroBooNE

- 3+1 Sterile Neutrino Search: simultaneously analyze
 v_e appearance and disappearance channels
- Low energy excess results rejecting $\nu_e \rightarrow \nu_e \rightarrow \nu_e$ interpretation Lat >99% CL $\nu_e \rightarrow \nu_s$

• See more details in Recent Results from MicroBooNE talks by Nitish Nayak, Erin Yandel's and Fan Gao^{ν_e} Phys. Rev. Lett. 130, 011801 (2023)

 ν_e

ν

 ν_e

Sensitivity of SBN program

- Searches for both v_e appearance and v_μ disappearance

v_e appearance

v_{μ} disappearance

• SBN covers much of the parameters allowed by past anomalies at $>5\sigma$ significance

Far Detector (ICARUS)

• Several technology improvements were introduced, aiming to further improve the achieved performance of ICARLIS previous runs: new cold vessels, improvement of the cathode planarity, high performance of the PMT system

Top - horizontal

PM

500

1000

 ICARUS is located on the been installed to reduce

Wire planes (anod

PM

TPC

1 T600 module

Cathode

16

© 2016-2018 CERN

F) and overburden has ground events

Side CRT

Minerba Betancourt

Field cage

-1000

600

100

z [cm]

3m concrete overburden

Fermilab

ICARUS at **FNAL**

- ICARUS began commissioning in 2020 with cosmic data
- First ICARUS physics runs collected last June December 2022 and spring 2023 from NuMI and Booster neutrino beams
- Commissioning and physics data have been used to perform the calibration, tune the reconstruction and start the first analyses with neutrino data, P.Abratenko et al, Eur. Phys. Journal C 83, 467 (2023)

Measurement of the angular dependence of the

Particle identification through calorimetric measurements

17 Minerba Betancourt https://arxiv.org/pdf/2407.12969, submitted to JINST

Neutrino Oscillation Analysis

ICARUS is pursuing single-detector neutrino oscillation measurement

18 Minerba Betancourt See more details in First Results from ICARUS by Jacob Zettlemoyer

CC 0 π **Cross Section with Neutrinos from NuMI**

- First cross section measurement: $I\mu$ +Nproton+ 0π
- Observables δP_T and $\delta \alpha_T$, sensitive to initial and final state effects
- Events with contained muons and protons
- Main background is events with pions

 $\delta \vec{p}_{\rm T} \equiv \vec{p}_{\rm T}^{\ell'} + \vec{p}_{\rm T}^{\rm N'}$

😤 Fermilab

 $\delta \alpha_{\rm T} \equiv \arccos$

Pion Sideband

See more details in Neutrino Interaction

Measurement by Jack Smedley

BSM Searches with NuMI

20

- Certain BSM searches benefit from sitting off-axis such as kaon coupled Higgs portal scalars
- Topology: events with two muons, search: look for resonance at specific value

found no new physics signal

i involving kaon decay and contained dimuon final y QCD Axion

See more details in Search for a Long-Lived nu mu Resonance by Nathaniel Rowe

Near Detector (SBND)

21

See more details in the SBND talk by Tereza Kroupova

SBND Detector Commissioning

- Liquid argon fill was completed during February-March, 2024
- Observed drift electron lifetime meets design requirement of > 3ms
- PMTs commissioned and initial gain balancing completed
- All CRT walls installed as of August 2024
- TPC high voltage system has been operating stably since July
- Commissioning the different systems TPC, PMT and CRT is in progress
- 1.6 μ s wide per reflecting the duration of the BNB spill

SBND First Neutrino Data

First neutrino interactions

Neutrino Interactions at SBND

• New data sets will reach the order of millions of neutrino interactions for single channels

SBND Science Program Beyond the Oscillation Search

- Precision neutrino-nucleus interaction measurements
- Beyond standard model physics searches

BSM Searches

Summary

- Several measurements pro (sterile) type of neutrino
 - LSND, MiniBooNE, reac
- New short baselines expe
 - JSNS²-II and SBN at Fer
- The SBN detectors will provide the both appearance and disar
- Rich physics program of n
- SBND completed the con
- ICARUS is collecting phys
- Exciting times for the con experiments JSNS²-II

∆ m²[eV²/c⁴] 0. 0.

10⁻¹

10

′10⁻⁴

 10^{-3}

ステライルニュート 探索実験等数

JSNS2-II

MORIMATSU