JUNO: status and physics potential

Davide Basilico on behalf of the JUNO collaboration INFN Milano

25th International Workshop on Neutrinos from Accelerators

Argonne National Laboratory, Illinois, US

2024 September 20

Istituto Nazionale di Fisica Nucleare

v oscillations and Reactor experiments

Neutrino oscillations

Quantum superposition of v mass eigenstates leads to v oscillation $|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle$ PMNS mixing matrix (rotation)

Neutrino oscillations

Quantum superposition of v mass eigenstates leads to v oscillation

 $\langle \nu_{\alpha} \rangle = \sum^{3} U^{*}_{\alpha i} |\nu_{i}\rangle$

i=1

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{array}{c} c_{ij} = \cos \theta_{ij} \\ s_{ij} = \sin \theta_{ij} \\ \end{array}$$

Neutrino oscillations

Neutrino Mass Ordering (NMO)

- 1) Missing tile for the fundamental comprehension of neutrinos
- 2) Strictly connected to < 1% determination of θ_{23} , Δm^2 splittings

- 1) Missing tile for the fundamental comprehension of neutrinos
- 2) Strictly connected to < 1% determination of θ_{23} , Δm^2 splittings
- 3) Remove the degeneracy between leptonic CP violation (δ_{CP}) and MO \rightarrow T2K, NOvA, DUNE

- 1) Missing tile for the fundamental comprehension of neutrinos
- 2) Strictly connected to < 1% determination of θ_{23} , Δm^2 splittings
- 3) Remove the degeneracy between leptonic CP violation (δ_{CP}) and MO \rightarrow T2K, NOvA, DUNE
- 4) Driving the strategy for the next-gen $0\nu\beta\beta$ experiments: can they determine the Dirac/Majorana nature?

- 1) Missing tile for the fundamental comprehension of neutrinos
- 2) Strictly connected to < 1% determination of θ_{23} , Δm^2 splittings
- 3) Remove the degeneracy between leptonic CP violation (δ_{CP}) and MO \rightarrow T2K, NOvA, DUNE
- 4) Driving the strategy for the next-gen $0\nu\beta\beta$ experiments: can they determine the Dirac/Majorana nature?

Artificial $\overline{v_e}$ source \rightarrow unstable fragments: cascade of β decay of fission daughters of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu. Typical flux ~ 2·10²⁰ v_e / s / GW_{th}, energy E < 10 MeV

Detection: Inverse Beta Decay reaction prompt-delayed coincidence: energy, time, space $\overline{\nu}_e + p \rightarrow e^+ + n$

0.511 MeV

prompt

Wide L/E ranges to explore different oscillation features

source-detector distance / neutrino energy

$$P(\nu_{\rm e} \to \nu_{\rm e}) = 1 - \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21}) - \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31}) - \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

$$\Delta_{kj} = 1.27 \Delta m_{kj}^2 [\text{eV}^2] \frac{L[\text{m}]}{E[\text{MeV}]}$$

	Normal Ordering	Inverted Ordering	Error $(\%)$
$\sin^2 \theta_{12}$	$0.307\substack{+0.012\\-0.011}$	$0.307\substack{+0.012\\-0.011}$	4
$\sin^2 heta_{23}$	$0.454_{-0.016}^{+0.019}$	$0.568\substack{+0.016\\-0.021}$	3-4
$\sin^2\theta_{13}\times 10^{-2}$	$2.22^{+0.06}_{-0.06}$	$2.22\substack{+0.07 \\ -0.06}$	2.6
$\delta_{CP}/^{\circ}$	232^{+39}_{-25}	273^{+24}_{-26}	10-15
$\Delta m_{21}^2 \times 10^{-5} \mathrm{eV}^2$	$7.41_{-0.20}^{+0.21}$	$7.41^{+0.21}_{-0.20}$	2.7
$\overline{\Delta m_{3\ell}^2 \times 10^{-3} \mathrm{eV}^2}$	$+2.505\substack{+0.024\\-0.026}$	$-2.487^{+0.027}_{-0.024}$	1.0

	Normal Ordering	Inverted Ordering	Error $(\%)$			
$\sin^2 \theta_{12}$	$0.307\substack{+0.012\\-0.011}$	$0.307\substack{+0.012\\-0.011}$	4			
$\sin^2 \theta_{23}$	$0.454\substack{+0.019\\-0.016}$	$0.568\substack{+0.016\\-0.021}$	3-4			
$\sin^2\theta_{13} \times 10^{-2} \mathrm{k}$	$2.22\substack{+0.06\\-0.06}$	$2.22_{-0.06}^{+0.07}$	2.6			
$\delta_{CP}/^{\circ}$	232^{+39}_{-25}	273^{+24}_{-26}	10-15			
$\Delta m_{21}^2 \times 10^{-5} \mathrm{eV}^2$	$7.41^{+0.21}_{-0.20}$	$7.41\substack{+0.21 \\ -0.20}$	2.7			
$\Delta m^2_{3\ell} \times 10^{-3} \mathrm{eV}^2$	$+2.505^{+0.024}_{-0.026}$	$-2.487^{+0.027}_{-0.024}$	1.0			
	KamLAND,	solar experiments				
Daya Bay + (SK+T2K) + NOvA + MINOS + IceCube						
(SK+T2K) + NOvA + IceCube-DeepCore + MINOS + Daya Bay + RENO + DoubleChooz						

Jiangmen Underground Neutrino Observatory

Huge and multipurpose liquid-scintillator detector underground in Southern China.

Jiangmen Underground Neutrino Observatory

Huge and multipurpose liquid-scintillator detector underground in Southern China.

Main goal: determine the NMO and measure Δm^2 splittings and $\sin^2\theta_{12}$ at <1% level via reactor anti- v_2 oscillations (52.5 km baseline)

JUNO collaboration

Collaboration established in 2014.

More than 700 collaborators from 74 institutions in 17 countries/regions

24th JUNO collaboration meeting in Kaiping (city close to the exp. site), June 29- July 5, 2024

~240 participants

Detector design

Largest liquid scintillator ever (20 kton), equipped with 17612 large PMTs + 25600 small PMTs to collect scintillation light

_iquid	scint.	(20Kt)
--------	--------	--------

Experiment	Daya Bay	Borexino	KamLAND	JUNO
Target mass [t]	160	~300	~1000	~20000
Photo electrons / MeV	~160	~500	~250	~1600
Energy resolution @MeV	~8.5%	~5%	~6%	~3%
Photocathode coverage	12%	34%	34%	78%
Energy cal. Uncert.	0.5%	1.0%	2.0%	<1%

Central detector status

Talk: M. Beretta, "Design and status of the JUNO detector", WG6

Central detector status

- Stainless Sphere structure completed except bottom 4 layers
- Acrylic vessel construction ongoing from the top to bottom (2 layers missing)
- Data taking: 2025

Talk: M. Beretta, "Design and status of the JUNO detector", WG6

Where are we?

A dual PMT system

20 inch PMTs (Large)

3 inch PMTs (Small)

Inner view of PMTs arrays

JUNO: a dual-calorimetric detector

- 20-inch (large) PMTs: 1200 p.e./MeV: main calorimetry
- 3-inch (small) PMTs: 40 p.e./MeV: \rightarrow control energy bias + redundancy

Status: production and testing done for all PMTs, installation close to completion

JUNO physics potential

Why JUNO?

Why JUNO?

Why JUNO?

First experiment to observe both fast $(\sin^2\theta_{13}, |\Delta m^2_{3\ell}|)$ and slow $(\sin^2\theta_{12}, \Delta m^2_{21})$ oscillations in vacuum

 \rightarrow interference pattern depends on NMO

... no dependence on θ_{23} , δ_{CP} , small dependence on matter effects: **no degeneracies!**

Key challenges for JUNO

1) Large statistics

 \rightarrow huge scintillator mass, powerful nuclear reactors

Key challenges for JUNO

1) Large statistics

 \rightarrow huge scintillator mass, powerful nuclear reactors

2) Energy resolution: 2.95% @ 1MeV + 1% understanding of the intrinsically non-linear energy scale

 \rightarrow LS optical properties + light collection + calibrations

ions

$$energy non-uniformity (~0.8\%)$$

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + b^2 + \left(\frac{c}{E}\right)^2}_{1}$$
noise, Cherenkov (~1\%)
Poisson statistical
fluctuations (~2.6\%)

Calibrations in JUNO

Determination of e⁺ non-linearity at <1% + optimization of energy resolution at <3% level

Radioactive sources (100-200 Hz) + Laser sources

Sources/Processes	Type	Radiation
¹³⁷ Cs	γ	0.662 MeV
$^{54}\mathrm{Mn}$	γ	$0.835{ m MeV}$
60 Co	γ	$1.173+1.333\mathrm{MeV}$
^{40}K	γ	$1.461\mathrm{MeV}$
$^{68}\mathrm{Ge}$	e ⁺	annihilation $0.511 + 0.511 \mathrm{MeV}$
241 Am-Be	n, γ	neutron + $4.43 \text{MeV} (^{12}\text{C}^*)$
$^{241}Am^{-13}C$	n, γ	neutron + $6.13 \text{MeV} (^{16}\text{O}^*)$
$(\mathrm{n},\gamma)\mathrm{p}$	γ	$2.22{ m MeV}$
$(n,\gamma)^{12}C$	γ	$4.94 \mathrm{MeV}$ or $3.68 + 1.26 \mathrm{MeV}$

Talk: A. Takenaka, "Detector calibration in the JUNO experiment", WG6

JHEP 03 (2021) 004

Key challenges for JUNO

1) Large statistics

 \rightarrow huge scintillator mass, powerful nuclear reactors

2) Energy resolution: 2.95% @ 1MeV + 1% understanding of the intrinsically non-linear energy scale
 → LS optical properties + light collection + calibrations

3) Low background

→ underground + scintillator purification system + material screening + veto systems

distillation plant

Top Tracker

Water Pool

Liquid scintillator purification chain

- An industrial scale purification process is needed
- Radiopurity U/Th requirements: for NMO ~ 10^{-15} g/g, for solar v campaign ~ 10^{-17} g/g

	Bkg scenario	²³⁸ U and ²³² Th [g/g]	Reference
		10 ⁻¹⁵	minimum NMO requirement
5000 m³ LAB storage tank 1) Al ₂ O ₃ for optical transparency 2) Distillation for radiopurity Mixing LAB with PPO and bis-MSB 97.6% 85% Commissioning 1800 m SS	Medium	10 ⁻¹⁶	10x worse wrt Borexino Phase-I
85% Commissioning 15% 15% 15% 15% 15% 15% 15% 15% 15% 15%		10 ⁻¹⁷	100x worse wrt Borexino Phase-I
Monitoring pre- detector (OSIRIS) Monitoring pre- detector (OSIRIS)	Very Low	~10 ⁻¹⁹ (²³⁸ U) ~5∙10 ⁻¹⁹ (²³² Th)	Borexino Phase-III

Talk: M. Beretta, "Design and status of the JUNO detector", WG6

Key challenges for JUNO

1) Large statistics

 \rightarrow huge scintillator mass, powerful nuclear reactors

2) Energy resolution: 2.95% @ 1MeV + 1% understanding of the intrinsically non-linear energy scale
 → LS optical properties + light collection + calibrations

3) Low background

→ underground + scintillator purification system + material screening + veto systems

4) Knowledge of reactor spectra at sub-% level

 \rightarrow near detector: Taishan Antineutrino Observatory (TAO) at 44 m \rightarrow from Taishan reactor \rightarrow reduce spectral shape systematics

Signal and backgrounds

- Prompt + delayed coincidences \rightarrow high s/b ratio
- 47 Inverse Beta Decay candidate events/day expected (~16k / year), 7% irreducible background

Sensitivity to NMO

Fit data against both NO and IO scenarios $\Delta \chi^2$: Fitting wrong model - Fitting correct one

Several experimental factors as systematics: knowledge of energy resolution and linearity, background shapes, ...

Reactor v oscillation analysis: median 3σ sensitivity to NMO in 7.1 years.

Oscillation parameters: precision measurements

24

Oscillation parameters: precision measurements

24

Boosting NMO sensitivity w/ atmospheric v

Key idea for upward 3-10 GeV v or anti-v crossing Earth: MSW resonance takes place in according to the sign of $A/\Delta m_{3\ell}^2$ (A = v-matter interaction potential)

ν:	A > 0 \rightarrow MSW if Δm_{3l}^2 > 0	$\rightarrow NO$
anti-v:	A < 0 \rightarrow MSW if $\Delta m^2_{3\ell}$ < 0	\rightarrow IO

Boosting NMO sensitivity w/ atmospheric v

Key idea for upward 3-10 GeV ν or anti- ν crossing Earth: MSW resonance takes place in according to the sign of $A/\Delta m_{3\ell}^2$ (A = ν -matter interaction potential)

$$v$$
: A > 0 → MSW if $\Delta m_{3l}^2 > 0$ → NO
anti- v : A < 0 → MSW if $\Delta m_{2l}^2 < 0$ → IO

Conventional PID techniques + Machine learning approaches

Joint reactor-atmospheric analysis in progress

Neutrinos from natural sources

Talk: Prospects for Neutrinos from Natural Sources in JUNO, Iwan M. Blake, WG1

Goals: solar metallicity puzzle (mainly based on CNO v) + oscillations + Non-Standard Interactions

For most of the background scenarios JUNO will improve the best results on solar v fluxes.

A giant 20-kton liquid scintillator v detector with a rich and multipurpose physics program.

Challenges: excellent energy resolution, scintillator radiopurity, background rejection techniques.

A giant 20-kton liquid scintillator v detector with a rich and multipurpose physics program.

Challenges: excellent energy resolution, scintillator radiopurity, background rejection techniques.

Physics potential:

- Δm_{21}^2 , $|\Delta m_{31}^2|$, and $\sin^2\theta_{12}$ measurements with <0.5% precision in 6 years;
- Mass Ordering via oscillation interference in vacuum: **3** σ significance in 7.1 years;
- neutrino spectroscopy from **natural sources** (atmosphere, Sun, Earth, supernovae).

A giant 20-kton liquid scintillator v detector with a rich and multipurpose physics program.

Challenges: excellent energy resolution, scintillator radiopurity, background rejection techniques.

Physics potential:

- Δm_{21}^2 , $|\Delta m_{31}^2|$, and $\sin^2\theta_{12}$ measurements with <0.5% precision in 6 years;
- Mass Ordering via oscillation interference in vacuum: **3** σ significance in 7.1 years;
- neutrino spectroscopy from **natural sources** (atmosphere, Sun, Earth, supernovae).

Detector construction close to completion: first data are expected in 2025.

Thanks!

Surface buildings / campus

- Surface Assembly Building
- LAB storage (5 kton)
- Water purification / Nitrogen
- Computing
- Power station
- Cable train
- Office / Dorm
- ~240 people working onsite now

JUNO site

Vertical Shaft, 563 m put into use in 2023

Slope tunnel, 1265m

~ 650 m m.w.e. $R_{\mu} \sim 0.004 \text{ Hz/m}^2$ $< E_{\mu} > \sim 207 \text{ GeV}$

12

TAO: Taishan Antineutrino Observatory

Satellite detector located at 44 m from Taishan reactor - 10 m2 SiPM + 2.8 ton Gd-loaded LS @-50 °C - Energy resolution: <2%/√E, 4500 p.e./MeV

Main goal: measure the reactor neutrino spectrum (as a reference to JUNO) \rightarrow sub-percent precision \rightarrow reduce spectral shape systematics

Status:

Assembled at IHEP with ~100 SiPM Disassembling, to be re-installed in the Taishan Nuclear Power Plant in 2024

arXiv:2005.08745

LPMTs main specifications

Table 3

Summary of the 3-inch PMTs acceptance criteria and test results for different parameters. Results for class A parameters were from 2 value of vendor data after acceptance measurement introduced in Section 4.2, and other results were from acceptance measurement only all of the parameters were measured at 3×10^6 gain.

Parameters	Class	Requirement		Test fraction		Tolerance	Results
		(limit)	(mean)	HZC	JUNO	of diff.	(mean)
Φ (glass bulb)	A	(78, 82) mm	-	100%	10%	-	OK
QE@420 nm	A	>22%	>24%	100%	10%	<5%	24.9%
High Voltage	A	(900,1300) V	-	100%	10%	<3%	1113 V
SPE resolution	A	<45%	<35%	100%	10%	<15%	33.2%
PV ratio	A	> 2	> 3	100%	10%	-	3.2
DCR@0.25 PE	A	<1.8 kHz	<1.0 kHz	100%	10%	-	512 Hz
DCR@3.0 PE	Α	<30 Hz	-	100%	10%	-	7.2 Hz
TTS (σ)	B	<2.1 ns	-	_	3%	-	1.6 ns
Pre-pulse	В	<5%	<4.5%	-	3%	-	0.5%
After-pulse	B	<15%	<10%	-	3%	-	3.9%
QE non-uniformity	B	<11%	-	-	3%	-	5%
Φ (eff. cathode)	B	>74 mm	-	-	3%	-	77.2 mm
QE@320 nm	C	>5%	-	<u></u>	1%	_	10.2%
QE@550 nm	C	>5%	-	-	1%	-	8.6%
Aging	D	>200 nA years	3 — 3	-	3 PMTs		OK

Atmospheric neutrinos and MSW

$$P(\nu_{\rm e} \to \nu_{\mu}) \approx P(\nu_{\mu} \to \nu_{\rm e}) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13}^{\rm m} \sin^2 \left[1.27 \left(\Delta m_{31}^2 \right)^{\rm m} \frac{L}{E_{\nu}} \right];$$

$\sin^2 2 \theta^m -$	$\sin^2 2\theta_{13}$
$\sin^2 2\theta_{13} =$	$\frac{1}{\left(\cos 2 heta_{13} - A/\Delta m_{31}^2\right)^2 + \sin^2 2 heta_{13}}$

Downward events: they don't cross relevantly the Earth, so A ~ 0, therefore the oscillation probablity in vacuum holds and there are no differences between NO and IO.

Upward events: MSW resonance takes place according to the sign of the ratio $A/\Delta m_{31}^2$.For v, A > 0 holds:MSW takes place if $\Delta m_{31}^2 > 0$, that is NOFor anti-v, A < 0 holds:MSW takes place if $\Delta m_{31}^2 < 0$, that is IO

$$P_{\rm NH}(\nu_{\alpha} \to \nu_{\beta}) = P_{\rm IH}(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}), P_{\rm IH}(\nu_{\alpha} \to \nu_{\beta}) = P_{\rm NH}(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

Calibration strategy

Hardware & sources

- 1D: Automatic Calibration Unit (ACU)
- 2D: Cable Loop System (CLS)
- 3D: Remotely Operated under-LS Vehicles (ROV)

Optimization of energy resolution

$$\frac{\sigma_{E_{\rm vis}^{\rm prompt}}}{E_{\rm vis}^{\rm prompt}} = \sqrt{\left(\frac{a}{\sqrt{E_{\rm vis}^{\rm prompt}}}\right)^2 + b^2 + \left(\frac{c}{E_{\rm vis}^{\rm prompt}}\right)^2}$$

Effective parametrization for energy resolution \rightarrow each terms cover multiple effects, but mainly:

- "a" term → Poisson statistical fluctuations (~2.6%)
- "b" term \rightarrow energy non-uniformity (~0.8%)
- "c" term \rightarrow background noise term (~1%)

Assumptions	a	ь	c	$\tilde{a} = \sqrt{a^2 + (1.6b)^2 + (\frac{c}{1.6})^2}$
Central IBDs	2.62(2)	0.73(1)	1.38(4)	2.99(1)
Ideal correction	2.57(2)	0.73(1)	1.25(4)	2.93(1)
Azimuthal symmetry	2.57(2)	0.78(1)	1.26(4)	2.96(1)
Single gamma source	2.57(2)	0.80(1)	1.24(4)	2.98(1)
Finite calibration points	2.57(2)	0.81(1)	1.23(4)	2.98(1)
Vertex smearing $(8 \text{ cm}/\sqrt{E(\text{MeV})})$	2.60(2)	0.82(1)	1.27(4)	3.01(1)
PMT QE random variations	2.61(2)	0.82(1)	1.23(4)	3.02(1)

Non-uniformity is corrected by calibrations with radioactive sources located in multiple positions

 \rightarrow radial-angular function to correct reconstructed energy

("optimizing energy resolution")

Calibrations: non uniformity correction

Non-uniformity is corrected by calibrating multiple positions with radioactive (AmC) sources $g(R,\theta)$: radial-angular non-uniformity correction

Mapping the detector with AmC source

ACU

CLS

12 14 16 18

Talk: A. Takenaka, "Detector calibration in the JUNO experiment", WG6

Calibration program

[3 / x /]

Program structured following three time periods

	Source	Energy [MeV]	Points
	Neutron (Am	-C) 2.22	250
1) Comprehensive calibrations	Neutron (Am-	-Be) 4.4	1
	Laser	/	10
- basic understanding of the CD performance	⁶⁸ Ge	0.511×2	1
- At the beginning of data-taking		0.662	1
	⁵⁴ Mn	0.835	1
- > 250 points, ~48h	⁶⁰ Co	1.17 + 1.33	1
	⁴⁰ K	1.461	1
	Total	/	/
2) Monthly calibrations	System	Source	Points
	ACU	Neutron (Am-C)	27
- Monitor non-uniformity	ACU	Laser	27
100 points = 11 h	CLS	Neutron (Am-C)	40
-~100 points, ~11i	GT	Neutron (Am-C)	23
	Total	1	/
3) Weekly calibrations			
- track major changes of the detector variations in	Source	Energy [MeV]	Points
\rightarrow track major charges of the detector \rightarrow variations in	Neutron (An	n-C) 2.22	5
the light vield of the LS. PMT gains, and electronics	Laser	/	10
	Total	/	/
- central axis, 0.1% precision on gamma peaks			

Non-linearity optimization

- **Physics nonlinearity** = non-linearity between particle energy and scintillating/Cherenkov photon
 - LS property, position independent
 - γ calibration sources
 - + ¹²B cosmogenic isotope
- **Instrumental nonlinearity** = nonlinearity between photon and charge for each channel.
 - PMT instrumentation property
 - Position dependent
 - Laser calib. source
 - \rightarrow dual calorimetry technique \rightarrow compare LPMTs and sPMTS response

Goal: determination of e+ non-linearity at <1% level

Neutrinos from natural sources

Solar *v* 0.1-10 MeV

Geo v few MeV

Supernova vtens of MeV

Atmospheric v ~0.5-100 GeV

New physics?

- Proton decay
- Neutrino magnetic moment
- Sterile neutrinos
- Non Standard Interactions
- Lorentz invariance
- Others

Expected rates

Energy

⁷Be: ~10000/day CNO: ~1000/day ⁸B: ~90/day ~400 / year

Core Collapse SN
@ 10 kpc: ~10³ in sec.
Diffuse SN: few / year

Several / day

Talk: Prospects for Neutrinos from Natural Sources in JUNO, Iwan M. Blake, WG1

Shape uncertainties of the JUNO detector

Shape uncertainties of the JUNO detector, presented relative to the number of IBD events from Taishan and Yangjiang reactors in each bin. The absolute uncertainties are obtained by generating simulated samples where systematic parameters are varied based on their assumed uncertainties and taking square roots of diagonal elements of the resulting covariance matrices.

The NMO discriminator contour for JUNO exposure and energy resolution at 1 MeV for NO Asimov data set.

The resolution is scanned by varying a and fixing b = 0.64×10^{-2} , c = 1.20×10^{-2} MeV.

The gray, black, and green contour lines stand for 3σ , 4σ , and 5σ significance. The top pad shows the time evolution of the $|\Delta\chi^2_{min}|$ under the 2.8%, 2.9%, and 3.0% energy resolution at 1 MeV. The right pad shows the required energy resolution to achieve different $|\Delta\chi^2_{min}|$ under the JUNO exposure of ~6 years×26.6 GWth (data taking time of 6.7 years).

Systematic effect	Count	Relative uncertainty, $\%$	
		input	rate
JUNO systematic uncertainty	$\{13+340\}$		1.5
$\sin^2 heta_{13}$	1	3.2	0.14
Matter density (MSW)	1	6.1	0.066
Detector normalization	1	1.0	1.1
Energy resolution	3	0.19, 0.47, 0.83	$1.6 imes 10^{-7}$
Background rates	$\{7\}$		1.0
Accidentals	1	1.0	0.020
$^{9}\mathrm{Li}/^{8}\mathrm{He}$	1	20	0.40
Fast neutrons	1	100	0.25
$^{13}\mathrm{C}(lpha,n)^{16}\mathrm{O}$	1	50	0.062
Geoneutrinos	1	30	0.89
Atmospheric neutrinos	1	50	0.20
World reactors	1	2.0	0.050
Background shape	340		0.019
$^{9}\mathrm{Li}/^{8}\mathrm{He}$	(340)	10	0.0072
Fast neutrons	(340)	20	0.0016
${}^{13}{ m C}(lpha,n){}^{16}{ m O}$	(340)	50	0.0032
Geoneutrinos	(340)	5.0	0.015
Atmospheric neutrinos	(340)	50	0.0063
World reactors	(340)	5.0	0.0060
IBD spectrum shape uncertainty from TAO [†]	340	0.73 - 14	0.12

Summary of the systematic effects which impact the JUNO detector.

