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Thanks!

Let me start by thanking the
organizers for their invitation to
speak!

And thanks to all of you for
staying even though | stand
between you and dinner!
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What’s a target?

« Targets are the fulcrum between the Accelerator Complex and Experiments

- They convert the high-power primary beam (usually protons in HEP) into secondary beams of
desirable properties

Pions, kaons, muons, neutrinos, neutrons, etc.

\ ‘ ?

Proton-beam  Target K

Adapted from J. Eldred (?)
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But targets are always part of a much larger “targetry complex”
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But targets are always part of a much larger “targetry complex”

« The Target itself

« Heat and radiation protection devices

« Target containers

« Beam windows

« Cooling systems

« Spent-beam absorbers

« Electrical and mechanical support modules

« Colocated secondary beam focusing devices (horns)
« Remote handling systems

« Short and long-term radioactive storage facilities

« Beam and device health instrumentation

£& Fermilab
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But targets are always part of a much larger “targetry complex”

« The Target itself
« Heat and radiation protection devices

« Target containers

Targetry is an irreducibly multi-
disciplinary topical area,

»  Cooling systems requiring inputs from partlcle and
nuclear physics, high energy
density physics, radiation

.  Electrical and mechanical support modules damage, materials science,
mechanical, fluid, and thermal
engineering, and fabrication and
. Remote handling systems technical construction expertise

e Beam windows

« Spent-beam absorbers

« Colocated secondary beam focusing devices (horns)

« Short and long-term radioactive storage facilities

« Beam and device health instrumentation
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Device examples: a NuMI target
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Device examples: NuMI Horns
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It can go wrong in a flash

Target #2 survived through planned operating
period but inner wall suffered more damage

8 1 24 32 40 &8 56 2|

No. 950-300

Bulk Hg Flow Surface - UNCLEANED
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All you have to do is ...
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All you have to do is ...

It turns out targetry Is really

challenging and the HEP
community Is not currently
equipped to design, build,
and operate facilities at the
Multi-MW scale

ccccccccccccccc
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Targets are hard because of the multi-disciplinary nature ... with next gen
targets pushing well beyond the state-of-the-art

« Material behavior and evolution is poorly understood in the regimes of current and
future interest

- Impacts of radiation damage
- Response to thermal shock at extreme energy densities

- Highly non-linear thermomechanical behavior at high power density and large thermal gradients

« In addition there are understood — but extremely complex — technology challenges
- Integrated systems design and simulation (complex multi-scale, multi-physics problems)
- Radiation protection
- Remote handling
- High heat removal
- Extremely high-cycle fatigue

- Niche manufacturing technologies
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Challenge: Radiation Damage

Sustained irradiation disrupts the lattice structure of the
material, leading to bulk performance degradation

- Hardening and embrittlement

- Creep and swelling

- Loss of fracture toughness

- Thermal/electrical conductivity reduction

- Etc

Essentially all bulk properties worsen under irradiation!

Even worse, irradiation damage is not a state function

- History matters! And we have no fundamental predictive models

Post-Irradiation Examination (PIE) is critical to
understand the impacts of irradiation so that we can
predict what will happen in future designs

- HEP facilities are woefully unprepared for this challenge
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RaDIATE Collaboration

diation amage n ccelerator arget nvironments

RaDIATE collaboration created in 2012, with Fermilab as the leading institution

Objective:

0 Harness existing expertise in nuclear materials and accelerator targets

0 Generate new and useful materials data for application within the
accelerator and fission/fusion communities

Activities include:

0 Analysis of materials taken from existing beamline as well as new
irradiations of candidate target materials at low and high energy beam
facilities

0 In-beam thermal shock experiments
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Challenge: Thermal Shock

« Pulsed beams impose sudden energy deposition, generating dynamic stress
waves

- Fast expansion of the material surrounded by cooler material generates localized compressive
stresses

-  Stress waves move through the material at sonic velocity

- Surface reflections can lead to either compressive or tensile stresses depending on surface
constraints

- Plastic deformation, cracking, and fatigue failure can result

Thermal shock effect in an Iridium rod exposed to a high-intensity beam pulse at CERN’s HiRadMat facility
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The combination of radiation damage and thermal shock dramatically
multiplies the difficulties
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Challenge: Thermal shock

« There exist facilities for studying the dynamic thermal shock response/resistance
for materials

J/) Electron beam facilities (A2D2@Fermilab)

. HRM Extractlon m»@f
f NC HlRadMat Irradlatlon area

Proton beam facilities (HiRadMat@CERN)
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Challenge: High-cycle fatigue

Fatigue failure is normally due to
crack nucleation and slow growth over
time, followed by sudden, catastrophic
failure

The probability of failure is generally
logarithmic in the number of cycles
and reduced by the loading stress

Some materials have an endurance
limit, while others don’t

As usual, it's unclear how the
irradiation history impacts the fatigue
behavior of any given material or
device

Stress (ksi)
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2016 NuMI Horn 1 failure

« 700kW horn failed after 3 years in service
« 27M beam pulse cycles

« Likely a fatigue failure accelerated by
vibrations/ringing

- These things are LOUD when they pulse
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2022 NuMI Horn 2 failure

« Simultaneous bus and horn failure
- Bus original to facility: high cycle fatigue

- Horn failed at 24M beam pulses

21




Challenge: Radiation protection

« Extensive shielding required to
reduce prompt doses outside target
enclosures

- Severely radioactivated shielding and
components

« Airborne radiation with lifetime of
hours must be contained within the
facility

- Complicates facility design

- Complicates facility maintenance

o« Cooldown times of hours

« Radiolysis produces corrosives

— Ozone and nitric acid eat lots of materials

Long-lived isotopes create operational
and environmental release hazards

- 'Be

Produced from proton interactions with
atmospheric N and O

. Persistent surface contamination

Long lived environmental hazard

»  Migrates through shielding from point of
production for decades

Regulatory emission limits easily exceeded in
high-power operation without significant
mitigation efforts

Cooldown requirements dramatically
increase the program impacts of
operational failures
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Challenge: Radiation protection

« Target component manipulations remain “hot jobs” for years after operation

- 50mSv/yr is occupational dose limit for FNAL rad workers
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Our big ambitions amplify the practical difficulties of proposed facilities

Beam power is the driving parameter behind many of the most difficult problems
- Radiation and thermal shock damage
- Facility scale and footprint

- Component lifetime

« Spare component manufacturing is an expensive, labor intensive, time consuming process
- Typical focusing horn is three years calendar time start-to-finish

- This is not assembly line stuff, and requires significant engineering and technical skills

« Hotter components need to be stored more securely and for longer than we are used to

- Radioactive waste stream management is expensive and paper-work intensive

« The lack of PIE capabilities leave large uncertainties on both the design side and in
assigning root causes of component failures

- We're redesigning the MuZ2e target in the face of lifetime uncertainties driven by missing knowledge of radiation
damage impacts in our operating regime

3¢ Fermilab
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LBNF Target Systems: target hall beam intercepting devices
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F2D2 — Proposed Fermilab Facility for Dark Sector Discovery; up to
2.5MW, 1(ish)GeV beam




F2D2 — Proposed Fermilab Facility for Dark Sector Discovery; up to
2.5MW, 1(ish)GeV beam
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F2D2 - indicative of thermal and radiological challenges of Multi-MW

facilities
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Muon Collider See D. Stratakis’ talk

« A high power target buried inside a high field superconducting solenoid ... what
could possibly go wrong?

protons » pions » Mmuons
-

2-4 MW @ 5-20 GeV
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Muon Collider See D. Stratakis’ talk

« We really have no idea how to build and operate a muon collider target complex
« R&D needs are included in the (soon to be released?) GARD HPT Roadmap
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In summary ...

« High power targetry is hard
- Radiation damage and thermal shock

- Radiological issues

« Next generation facilities will require advances well beyond the current state of
the art across a broad range of topics

« Significant R&D is absolutely necessary to meet these challenges

- And we need that work to start now if we hope to make intelligent decisions on the appropriate
timescales

2% Fermilab
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Special thanks to the many colleagues who have taught me what little |

know about target systems
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Nikolai Mokhov
Frederique Pellemoine
Kavin Ammigan

Chris Densham

Steve Werkema
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Thanks!

Science: Abridged Beyond the Point of Usefulness Zach Weinersmith
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