

Magnetic Field Analysis in the Muon g-2 Experiment

David Kessler – University of Massachusetts, Amherst Muon g-2 Collaboration NuFact 2024 16 September 2024

The g-2 Magnetic Field

- A **1.45-Tesla magnetic field** facilitates the Muon g-2 experiment.
- Muon anomalous precession:

$$\omega_a = -a_\mu * \left(\frac{q}{m_\mu}\right) * B$$

- a_{μ} precision goal: 140 ppb.
- *B* precision goal: 70 ppb.

The g-2 Magnetic Storage Ring.

Measuring with Nuclear Magnetic Resonance (NMR)

- FID signals from proton precession in sample.
- FID frequency is proportional to B.

$$\omega_p = -\frac{g_p q}{2m_p} B$$

Measurement Overview

• Trolley Probes and Fixed Probes:

378 **fixed probes** track changes in the field while muons are running.

Relative positions of trolley and fixed probes.

Trolley Runs

Trolley runs were performed every 2-3 days, with muon beam off.

Each trolley run covers the circumference of the storage ring.

Analysis Overview

- Tasks and Challenges:
 - Interpolation Combining trolley and FP data.
 - Calibration Trolley perturbs field while present.
 - Transient Fields Too fast for trolley/FP to see.

Spherical water sample at 34.7° Celsius

In field averaged over time/space muon distribution

• Shielded proton frequency $\tilde{\omega}_p'$ combines with ω_a , alongside known fundamental constants, to produce a_μ .

Trolley Calibration

- Each trolley probe compared to calibration probe.
- Determines field perturbation from trolley structure.
- Alignment and Rapid Swapping procedure.
- Nine campaigns over the course of g-2 operations.

Absolute Calibration

- Getting $\widetilde{\omega}'_p$ (*shielded spherical-water...*) from $\omega_p(cali \ probe)$.
- Tests performed with Argonne magnet to quantify each effect.

$$\widetilde{\omega}_{p}^{\prime}(T_{r}) = \begin{bmatrix} 1 + \delta^{T}(T_{r} - T) + \left(\epsilon - \frac{1}{3}\right)\chi_{H_{2}O}(T) - \delta_{probe} \end{bmatrix} \omega_{p}(cali \ probe, T)$$

$$Temperature$$

$$Correction$$

$$\sim 100 \ ppb$$

$$Shape \ and$$

$$Susceptibility \ Effects$$

$$\sim 100 \ ppb$$

$$Material \ Effects$$

$$\sim 10 \ ppb$$

Transient Fields

Kicker transient field and Faraday Effect magnetometer.

Uncertainty Comparisons

Run-1 Uncertainties Table

Run-2/3 Uncertainties Table

Quantity	Correction terms (ppb)	Uncertainty (ppb)	Quantity	Correction (ppb)	Uncertainty (ppb)	
Quantity	ternis (ppo)	(ppo)	ω_a^m (statistical)	• • •	201	
ω_a^m (statistical)		434	ω_a^m (systematic)		25	
ω_a^m (systematic)		56	C	451	32	
C_{e}	489	53	C_e	170	10	
C_p	180	13	C_{pa}	-27	13	
C_{ml}	-11	5	C_{dd}^{pa}	-15	17	
C_{pa}	-158	75	C_{ml}	0	3	
$f_{\text{calib}}\langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56	$f_{\text{calib}} \cdot \langle \omega'_p(\vec{r}) \times M(\vec{r}) \rangle$		46	
B_k	-27	37	B_k	-21	13	
B_q	-17	92	$\ddot{B_q}$	-21	20	
$l'_{p}(34.7^{\circ})/\mu_{e}$		10	$\mu'_{p}(34.7^{\circ})/\mu_{e}$		11	
m_u/m_e		22	m_{μ}/m_{e}		22	
$g_e/2$		0	$g_e/2$		0	Origina
Fotal systematic		157	Total systematic for \mathcal{R}'_{μ}		70	field go
Fotal fundamental factors		25	Total external parameter	s	25	achieve
Totals	544	462	Total for a_{μ}	622	215	

Upcoming Improvements

Run-2/3 Field Uncertainties:

	Uncertainty (ppb)			
Description	Run-2	Run-3a	Run-3b	
Calibration probe		8.9		
Trolley calibration		17.8		
Spatial field maps	37.2	38.5	38.1	
Tracking	17.3	16.5	17.8	
Muon weighting	13.4	7.9	6.9	
Transient booster		7		
Transient kicker	13.3			
Transient ESQ	19.5			
Subtotal uncorrelated	15.4	10.7	16.0	
Subtotal correlated	51.3	52.0	50.6	

Physical Review D 110, 032009 (2024)

Upcoming Run-4/5/6 results will include these updates:

Cross-calibration with He3 and Japan probes. Post-Run6 calibration campaign. Precision garage- and collimator-region measurements.

Reduced uncertainty (better beam centering).

Kicker transient spatial analysis. ESQ transient off-diagonal measurements.

And more!

