NuFact 2024

Beam Dynamics Corrections of the Muon g-2 Experiment at Fermilab

David A. Tarazona

September 16, 2024

Recap

Motivation/Outline

Motivation/Outline

20)24 update	Slide from Christine Davies (University of Glasgow)	
BMW/DMZ24	- 1,	$a_{\mu} imes 10^{10} - 11659000$	
2407.109 adds 0.048f	This talk is ab	out:	
ensemble,			
L/T error. U	1. Muon bean	n production/injection/confinement.	
data-driven large-t tail.			
Blinded analysis.	2. Storage ring	g: beam parameters.	
WP20 dats	U V		
driven: -	3. Beam dyna	mics corrections at the Muon q -2	
693.1(4.0)	Experiment		
7 ^{BMV}	u_{20} 10 u_{μ} –		

Muon beam production

- 10¹² protons per pulse (~8.89GeV) hit the production target.
- From parity violation in $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ decays, muons are highly polarized.
- Fermilab's Muon Campus beamlines transport ~3.1 GeV/c muons to storage ring.
- Muon beam is purified in Delivery Ring.

Muon Beam: Injection

Muon beam injection

- Beam's transverse profile is measured with gaseous straw tracking detector:

Imperfect injection kick creates beam's radial centroid oscillation (aka "Coherent Betatron Oscillation" CBO).

-

 $f_{CBO} = f_C(1 - \nu_x) \approx 0.37 \text{ MHz}$

- Optics mismatch between injected beam and ring produces beam's radial width oscillation.
- New application of radio-frequency (RF) electric fields minimizes CBO.

Muon beam vertical confinement

- The ElectroStatic Quadrupole system (ESQ) provides vertical focusing.
- The ESQ plates are mis-powered for closed orbit distortions.

Ring and optical lattice parameters

Parameter	Value	
Nominal momentum (p_0)	3.094 GeV/c	
Momentum acceptance	$\pm 0.56\%$	
Radial tune (v_x)	0.944	
Vertical tune (v_y)	0.330	
Bending magnetic field (B_0)	1.4513 T	
Bending radius (ρ_0)	7.112 m	
Revolution period	149.2 ns	
Horizontal admittance	268π mm.mrad	
Vertical admittance	93π mm.mrad	
Maximum excursion	45 mm	
$x' \max$	6 mrad	
y' max	2 mrad	
High-voltage (HV) setpoint	$\sim \pm 18.3 kV$	
Vacuum in storage volume	$\lesssim 10^{-6}$ Torr	
Current	5170 A	

*Representative values	
------------------------	--

- Temporal stability and spatial homogeneity of the magnetic guide field are essential to the experiment.
- Average magnetic field experienced by stored muons needs to remain stable on the scale of ppm.

Parameter	Value (~)	Azimuthal Variation
α_x	0	< ±0.1
β_x	7.5 m	< 3%
γ_x	$0.13 {\rm m}^{-1}$	< 3%
D_x	8 m	< 2%
α_y	0	< ±0.2
β_y	21.5 m	< 3%
γ_y	$0.046{ m m}^{-1}$	< 1%
D_y	0.03 m	$< \pm 0.01 { m m}$

*Representative values

Optical lattice

Beam stability is provided by relatively weak focusing:

$$x'' + \frac{1-n}{\rho_0^2} x = 0$$

$$y'' + \frac{n}{\rho_0^2} y = 0$$

Field index *n* from ESQ system:

$$n = \frac{\rho_0}{vB_0} \frac{\partial E_y}{\partial y}$$

n pprox 0.1 , $0 \le n \le 1$

- Weak-focusing modelling provides 1st order ring representation:

$$\beta_x(s) \approx \frac{\rho_0}{\sqrt{1-n}} \qquad \beta_y(s) \approx \frac{\rho_0}{\sqrt{n}} \qquad D_x(s) \approx \frac{\rho_0}{1-n}$$

 $Q_y \approx \sqrt{n}$ $Q_x \approx \sqrt{1-n}$

Nonlinearities

Beam Dynamics corrections: Motivation

Output: Bigher-energy positrons

Beam Dynamics corrections: Motivation

Output: Out

- However, the measured ω_a frequency is biased by the non-ideal dynamics of the stored muon beam:

$$\omega_a = \omega_S - \omega_C = -\frac{e}{m} a_{\mu} \langle B \rangle + \Delta \omega_a^{BD}$$

Beam dynamics systematic effects

Nonnegligible when:

- Muon collimation changes overall phase (C_{ml}) . [5 ---> 3 ppb]
- Muon beam drifts during measurement (C_{pa}). [75 ---> 13 ppb]
- Muon's energy-dependent decay changes overall phase (C_{dd}). [---> 17 ppb]

Beam dynamics systematic effects: E-field correction (C_e)

The *E*-field correction depends on the muon momentum distribution --->

$$C_e = \frac{n\beta^2}{1-n} 2\langle \delta^2 \rangle \approx 480 \text{ ppb}$$

Two methods to reconstruct the momentum distribution from experimental data:

Debunching method

Lower Mom (High Freq)

Fast signal of muons population seen by the calorimeter system builds from cyclotron frequencies distribution.

$$\omega_c \approx \omega_{c0} \left(1 - \frac{1}{1-n} \frac{\Delta p}{p_0} \right)$$

- A time-dependent kick induces the correlation between muon's momentum and time coordinates (under-kick prefers high p, and over-kick prefers low p).
- A **new** χ^2 -minimization analysis handles momentum-time correlation.

Beam dynamics systematic effects: *E*-field correction (C_e)

- The E-field correction depends on the muon momentum distribution --->
- Two methods to reconstruct the momentum distribution from experimental data:

Tracking method

- The tracking system measures the spectrometric behavior of the beam's horizontal motion.
- The narrowing of the beam's width for injection and consequent spread out due to magnetic rigidity is periodically observed (before non-linear decoherence).

$$BR = \frac{p}{e}$$

- The momentum spread is reconstructed from a **new** beam-physics analysis (independent of calorimeter data).

$$C_e = \frac{n\beta^2}{1-n} 2\langle \delta^2 \rangle \approx 480 \text{ ppb}$$

 R_0

Beam dynamics systematic effects: Pitch correction (C_p)

- The muon's vertical motion (pitch motion) causes the vertical spin precession.

- The horizontal precession (ω_a) is affected by coupled in-plane and out-of-plane precessions due to the vertical motion:

Pitch-driven radial component of $\boldsymbol{\omega}_s$ $\boldsymbol{\omega}_{sx} \approx \psi_0 \boldsymbol{\omega}_y \sin(\boldsymbol{\omega}_y t + \boldsymbol{\phi}_y),$

for which case $\omega_a \neq \omega_{cy} - \omega_{sy}$.

$$\omega_a \approx 1.44 \text{ rad/}\mu\text{s}, \omega_y \approx 13.8 \text{ rad/}\mu\text{s}$$

$$C_p = \left\langle \frac{\psi_0^2}{4} \left(1 + \frac{\omega_a^2}{\gamma_0^2 \left(\omega_y^2 - \omega_a^2\right)} \right) \right\rangle$$

$$\approx \frac{\langle \psi_0^2 \rangle}{4} = \frac{\langle y'^2 \rangle}{2} \approx \frac{n}{2\rho_0^2} \langle y^2 \rangle = \frac{n}{4\rho_0^2} \langle A_y^2 \rangle$$

Beam dynamics systematic effects: Pitch correction (C_p)

- Use the amplitude distribution $\langle A_y^2 \rangle$ instead of the biased vertical distribution $\langle y^2 \rangle$ due to the calorimeter acceptance (the vertical positions are not evenly weighted).
 - The amplitude is reconstructed from the position distribution (acceptance correction included).

- Tracker alignment and reconstruction dominate the systematic uncertainty.
- Improvement after Run-1: Independent analysis methods to calculate C_p .

Beam dynamics systematic effects: Phase-acceptance correction (C_{pa})

- The g-2 phase of the accepted positrons depends on the muon decay position $\vec{z} = (x, y, \phi)$ and energy.

Illustration of two maximally-accepted "decay cones" at different radial positions.

- The g-2 phase carried by a positron is indirectly related by its initial direction due to the parity-violating decay process.
- The phase (prop. to positron direction) that maximizes detection acceptance (prop. to muon decay position) drives the x-y phase dependence.
- This feature itself does not bias ω_a unless the beam profile changes over time.

Beam dynamics systematic effects: Phase-acceptance correction (C_{pa})

- Coherent changes of the transverse muon distribution while the beam depletes drive the phase-acceptance correction:

- The dominant effect comes from the vertical width distribution changes.

Beam dynamics systematic effects: Phase-acceptance correction (C_{pa})

- The calorimeter-dependent detection acceptance and asymmetry information are incorporated to compute the time-varying average phase.
- In Run-1, the phase-acceptance effect was amplified by the damaged ESQ resistors.
 - \circ The damaged resistors were replaced before Run-2.
 - It significantly improved the beam's early-to-late stability, and so did C_{pa} and ΔC_{pa} accordingly.

Beam dynamics systematic effects: Differential-decay correction (C_{dd})

- As low-momentum muons decay faster than high-momentum muons, the average momentum of the beam steadily grows over time.
- Correlations between the g-2 Phase and stored muon's momentum coordinates could induce a biasing on ω_a^m .

$$C_{dd} = -\frac{1}{\omega_a} \left(\frac{d\varphi_0}{dt}\right)_{dd} \qquad , \qquad \left(\frac{d\varphi_0}{dt}\right)_{dd} = \frac{d\varphi_0}{dp} \left(\frac{dp}{dt}\right)_{dd} \approx \frac{d\varphi_0}{d\delta} \frac{1}{\gamma_0 \tau_\mu} \sigma_\delta^2$$

- The momentum-phase correlation can be decomposed into three components:

Beamline
 Upstream dipole bending magnet.
 p-x Inflector geometry (especially radial coordinates).

 *p-t*₀
 Head-to-tail phase difference &
 Head-to-tail stored momentum distribution.

Beam dynamics systematic effects: Differential-decay correction (C_{dd})

$$\frac{d\phi_{0}}{dp} = \frac{\partial\phi_{0}}{\partial x}\frac{dx}{dp} + \frac{\partial\phi_{0}}{\partial x}\frac{dx'}{dp} + \frac{\partial\phi_{0}}{\partial y}\frac{dy'}{dp} + \frac{\partial\phi_{0}}{\partial t_{0}}\frac{dt_{0}}{dp} + \frac{\partial\phi_{0}}{\partial t_{0}}\frac{dt_{0}}{dt} + \frac{\partial\phi_{0}}{\partial t}\frac{dt_{0}}{dt} + \frac{\partial\phi_{0}}{dt}\frac{dt_{0}}{dt} + \frac{\partial\phi_{0}}{dt}\frac{dt_{0}}{dt} + \frac{\partial\phi_{$$

Summary

- A combination of beam preparation, injection, collimation, and storage provided the means to reach the experiment's precision goal.
- The highly uniform magnetic field and electric focusing system allowed for a uniform evolution of the muons' spin precession and cyclotron frequencies.
- Momentum spread and vertical betatron motion introduced additional spin dynamics. Also, detection effects bias the measured anomalous precession frequency.
- With well-established beam dynamics corrections, effects are quantified and applied to the experimental measurements.

BD Corrections [ppb]	Run-1	Run-2/3
C _e	489 ± 53	451 ± 32
C_p	180 ± 13	170 ± 10
C_{pa}	-158 ± 75	-27 ± 13
C_{dd}	-	-15 ± 17
C_{ml}	-11 ± 5	0 ± 3
Sum	$\textbf{500} \pm \textbf{93}$	580 ± 40

THANKS!