Probing and Knocking with Muons

Qiang Li Qite Li, Chen Zhou On behalf of the PKMu Group

Peking University 2024/09

Phys.Rev.D 110 (2024) 1, 016017 https://lyazj.github.io/pkmuon-site/categories/activities/

PKU Muon Detector Development

- → CMS Muon Trigger RPC: assembled and tested at PKU at around 2002
- → RPC R&D for nuclear physics
 → CMS GEM upgrade program

S. Chen, Q. Li*, et al. JINST: 10 (2014)10022.

北京大学、清华大学、中山大学、北京航空航天大学

Combination of glass RPC & Delay-line Readout

90% R134a+9% i-C4H10+1% SF6 50ml/Min

Muon: a bridge connecting applied and fundamental particle physics

Void in Pyramid

Container inspection

- Muongraphy: Non-destructive property!
- · Geology:

Rock formations, glaciers, minerals, oceans and underground carbon dioxide storage

· Archaeology:

pyramids in Egypt, Mausoleum of Qin Shihunag

Volcano monitor:

Showa-Shinzan, Asama, Sakurajima in Japan, and Stromboli in Italy

- Tropic Cyclones monitor: Kagoshima, Japan
- Nuclear safety monitor:

Visualization of reactor interiors, detection of spent nuclear fuel in dry storage barrels and nuclear waste

- Muon g-2
- Muon EDM (Electric Dipole Moment)
- Muon CLFV (Charged Lepton Flavor Violation)
- Muon-philic DM (NA64µ, MMM, this work)

Workshop on Muon Physics at the Intensity and Precision Frontiers (MIP 2024)

- 19 Apr 2024, 02:00 → 22 Apr 2024, 12:20 Asia/Shanghai
- Peking University
- L Chen Zhou (Peking University (CN)) , Qiang Li (Peking University (CN)) , Qite Li (Peking University)

<u>MIP2024</u>

Several possible Chinese Muon beams in the near future: Melody, CIADS, HIAF

Muon Philic Dark matter

- Muon Philic Dark Matter may be possible or <u>necessary</u>!
- Electron/Muons on Target Experiments
- <u>DarkShine</u> is ~ <u>LDMX</u> based on <u>Shanghai Synchrotron Radiation Facility</u>
- <u>MMM</u> (M3) is a US proposed muon-LDMX experiment
 - Intrigued by a proposal based on CERN NA64
 - "a lower-energy, e.g. 15 GeV, muon beam allows for greater muon track curvature and, therefore, a more compact experimental design..."

Figure 1. Dark bremsstrahlung signal process for simplified models with invisibly decaying scalar (*left*) and vector (*right*) forces that couple predominantly to muons. In both cases, a relativistic muon beam is incident on a fixed target and scatters coherently off a nucleus to produce the new particle as initial- or final-state 5 radiation.

Exotic Dark Matter concentrated near the Earth

PHYSICAL REVIEW LETTERS 131, 011005 (2023)

Dark Matter Annihilation inside Large-Volume Neutrino Detectors

Owing to their interactions with ordinary matter, a strongly interacting dark matter component (DMC) would be trapped readily in the Earth and thermalize with the surrounding matter. Furthermore, for lighter DM, strong matter interactions allow Earth-bound DM particles to distribute more uniformly over the entire volume of the Earth rather than concentrating near the center. Together, this can make the DM density near the surface of the Earth tantalizingly large, up to $\sim f_{\gamma} \times 10^{15} \text{ cm}^{-3}$ for DM mass of 1 GeV [8–11]. Despite their large surface abundance, such thermalized DMCs are almost impossible to detect in traditional direct detection experiments as they carry a minuscule amount of kinetic energy $\sim kT = 0.03$ eV. A

A large amount of dark matter is concentrated near the Earth, and their speed is very low, making it difficult to cause recoil signals in experiments.

 As we will see, muon DM scattering experiment (PKMuon) depends minorly on DM velocity

Muon Tomography and Muon-DM scattering

Muon DM Box experiment: qualitative estimation

Surrounding tracker layers

The local density of DM is at the order of $\rho \sim 0.3$ GeV/cm³ and with a typical velocity of v = 300 km/s. While F_{μ} is the muon flux $\sim 1/60/\text{s/cm}^2$ at the sea level. For Dark Matter mass $M_D \sim 0.1$ GeV, and detector box volume as $V \sim 1 \text{ m}^3$. Thus the sensitivity on Dark Matter Muon scattering cross section for 1 year run will be around

Notice for high speed muons, it is appropriate to treat DM as frozen in the detector volume (V), and the estimated rate per second could be:

$$\rho V/\mathrm{M}_\mathrm{D} \times \sigma_D \times F_\mu,$$

$$\sigma_D \sim 10^{-12} {
m cm}^2$$
 One year

In the exotic DM scenario as mentioned previously, the limit can approach µb

Muon DM Box experiment: Geant4 Simulation

- → MC simulation of GEM-based detector based on Geant4
 - Triple-GEM detector design refer to CMS GEM design
 - Muon material interaction automatically considered by Geant4
 - Reco hit position: Truth hit position smeared by GEM detector resolution (~ 200 um)
- → DM and muon scattering: model-independent method
 - Non-relativistic two-body elastic scattering between muon and DM following Newtonian mechanics
 - Standard halo model: DM velocity distribution follows Maxwell-Boltzmann distribution
 - * <u>CRY</u> (Cosmic-ray) model: cosmic-ray muon energy and zenith angle distributions at sea-level

Different from XENON1T/PandaX: Relativistic muon hit quasi-static DM

Muon DM Box experiment: Geant4 Simulation

Cosθ distribution in air has no obvious difference between that in a vacuum. Considering cost and technical difficulty, vacuuming of the boxes is not necessary in Phase I of the project.

Cosθ distributions in Maxwell-Boltzmann velocity distribution and a constant velocity distribution are similar. Therefore, **our signal distribution and detection is not sensitive to the DM velocity model.**

As the DM mass increases, a larger fraction occupies the region of large scattering angles, resulting a more pronounced discrepancy between the signal and background.

Background	Event Number $(\times 10^9)$					
Air	1.15					
Vacuum	1.14					
DM mass (GeV)	Constant (%)	Maxwell-Bolzmann (%)				
0.005	27.10 ± 0.01	27.11 ± 0.01				
0.05	29.56 ± 0.01	29.55 ± 0.01				
0.1	27.66 ± 0.01	27.64 ± 0.01				
0.2	25.01 ± 0.01	24.99 ± 0.01				
0.5	21.47 ± 0.01	21.46 ± 0.01				
1	18.67 ± 0.01	18.66 ± 0.01				
10	11.10 ± 0.01	11.10 ± 0.01				
100	8.44 ± 0.01	8.43 ± 0.01				

TABLE I. Background event numbers corresponding to the integrated luminosity of one-year exposure with the box filled with air and vacuum, along with the signal detection efficiency under different assumptions of DM velocity distribution and mass.

Muon DM Box experiment: expected results

- Binned maximum likelihood fits
- · UL determined by CLs method
- Only take statistical uncertainty into consideration

 10^{2}

Muon DM Beam experiment: qualitative estimation

For $M_D = 0.03 \,\text{GeV}$, $L = 1 \,\text{m}$, and $N_\mu \sim 10^6/\text{s}$ (e.g., CSNS Melody design), and one year $10^7 \,\text{s}$.

 $N = 10^{13} \times \sigma_D \times 100 / \mathrm{cm}^2,$

Thus the sensitivity on Dark Matter Muon scattering cross section for 1 year run will be around

The estimated rate per second:

$$dN/dt = N_{\mu} \times \sigma_D \times L \times \rho/\mathrm{M}_\mathrm{D},$$

$$\sigma_D \sim 10^{-15} \rm cm^2$$

One year

Notice the surrounding area can be as small as 100 cm².

Muon DM Beam experiment: Geant4 Simulation

Simulating 1 GeV muon beam hit lead plate passing through GEM detector: the inner diameter of our CGEM detector is designed to be **50 mm**, which is **5 times the** beam spot.

Orange surfaces are drift cathodes. The blue surfaces are GEM foils. The green surfaces are PCBs. The yellow lines are muons tracks. The red curves are electron tracks. The green lines are photons.

Cylindrical GEM (CGEM) detector structure for BESIII inner tracker system upgrade ¹³

Muon DM Beam experiment: Geant4 Simulation

If the scattering angle is large enough, muons may hit the surrounding detector.

$M_{\rm DM} \setminus E^{\mu}_{\rm kin}$	100 MeV (%)	1 GeV (%)	$10~{\rm GeV}~(\%)$
$0.05~{\rm GeV}$	84.29 ± 0.04	74.85 ± 0.04	45.93 ± 0.05
$0.1~{\rm GeV}$	91.74 ± 0.03	83.07 ± 0.04	58.17 ± 0.05
$0.2 \mathrm{GeV}$	94.35 ± 0.02	88.16 ± 0.03	68.37 ± 0.05
$0.5 \mathrm{GeV}$	95.17 ± 0.02	92.16 ± 0.03	78.91 ± 0.04
$1 { m GeV}$	95.34 ± 0.02	93.88 ± 0.02	84.68 ± 0.04
$10 { m GeV}$	95.35 ± 0.02	95.36 ± 0.02	94.06 ± 0.02
$100 { m ~GeV}$	95.43 ± 0.02	95.37 ± 0.02	95.37 ± 0.02

TABLE II. Signal detection efficiency under different assumptions of DM mass and muon beam energies.

Muon DM Beam experiment: Geant4 Simulation

Current Box Exp. Status

Accumulated Data

- 3+ months data taking since Jan. 2024
- Effective volume as 50cm*20cm*20cm
- Total effective events as 330548, with mean scattering angle as 0.0252 rad
- The fraction of large angle scatter events ($\theta > 0.2$ rad) is around 1.6%
- There are several events with cos θ <0.4
- Data Analysis is ongoing

More results in <u>a recent report</u> from Cheng-en Liu and Qite Li

Large angle events

Future

Interfacing Cosmic Muon or Muon beam

More physics program: CLFV, Muon-Nuclei scattering ... Larger area RPC or GEM being produced ¹⁹

Interfacing with a muon beam at HIAF

Melody, CIADS, HIAF Muon beams

<u>Melody</u>: approved and the first Chinese Muon beam will be built in 5 years.

	Surface Muon	Negative Muon	Decay Muon								
Proton Power (kW)	20	Up to 100	Up to 100								
Pulse width (ns)	130 to 10	500	130 to 10	HIAF	& HI.	AF-U			中国科学院近代物理研究所 Instate of Woder Physics, Chinese Academy of Sciences		
Muon intensity (/s)	10 ⁵ ~ 10 ⁶	Up to 5*10 ⁶	Up to 5*10 ⁶	 BRing-N: 34Tm, 569m, 3Hz SRing: 17(25)Tm, 270.5m, accumulation/compression BRing-S: 86Tm, 3Hz, superconducting MRing: 45Tm, superconducting, beam merging 					Nuclear matter Hypernuclei		
Polarization (%)	>95	>95	50~95								
Positron (%)	<1%	NA	<1%						High-energy SBing		
Repetition (Hz)	1	Up to 5	Up to 5	FAIR	Particle	238U28+	Intensity (ppp) 5×10 ¹¹	Est. time 2025	density physics		
Terminals	2	1~2	2	FNAL	4.5 8.0 3.0	p 238U35+	4×10^{3} 6.8×10^{13} 2×10^{12}	2022	BRing-S		
Muon Momentum (MeV/c)	30	30	Up to 120	HIAF-U	9.1 25	²³⁸ U ⁹²⁺ р	$\begin{array}{c} 1 \times 10^{12} \\ 4 \times 10^{14} \end{array}$	2032	iLinac up to 200MeV/u		
Full Beam Spot (mm)	10 ~ 30	10 ~ 30	10~30								

~30 MeV, ~100 MeV,

~1GeV

PoCA

- → The point of closest approach (PoCA) algorithm
- → The angular scattering distribution is approximately Gaussian

•
$$\sigma_{\theta} = \frac{13.6 \text{ MeV}}{\beta c p} \sqrt{\frac{L}{L_0}} [1 + 0.038 \ln \frac{L}{L_{\text{rad}}}] \approx \frac{13.6}{p} \sqrt{\frac{L}{L_0}}$$

- * *p*: momentum, βc : velocity, *L*: depth of the material, L_{rad} : radiation length of the material
- Scattering strength: establish a nominal muon momentum (3 GeV, for example), and define the mean square scattering of nominal muons per unit depth of a material

$$\lambda_{\text{mat}} = (\frac{13.6}{p_0})^2 \frac{1}{L_{\text{rad}}} \approx \sigma_{\theta_0,\text{mat}}^2$$

- $\,\,$ depends only on material radiation length, and varies strongly with material Z
- → Multiple muons income and scatter with material, and we measure it in two orthogonal planes x and y. If we know the path length L_i and the momentum p_i of each muon through the material:

$$\hat{\lambda} = \frac{1}{N} \sum_{i=1}^{N} N(\frac{p_i^2}{p_0^2} \cdot \frac{\theta_{xi}^2 + \theta_{yi}^2}{2L_i})$$

GEM

- → Triple-GEM detector installed in the CMS experiment
 - Improve trigger capabilities and muon measurements
 - * Excellent performance: rate > 10 kHZ/cm², time resolution ~ 8 ns, spatial resolution ~ 200 μ m
- → Electron amplification structure and flexible readout structures

- → Pixel readout VS resistive anode readout method
 - Challenge: Large amount of small pixels
 - Good comparable spatial resolution but less electronic channels
- → Design our exclusive readout for the specific requirements of PKU-Muon GEM detectors.
 - Hit position reconstruction algorithm ongoing

CMS TDR

CMS

Structure diagram of the basic resistive anode cell

RPC

→ RPC - R. Santonico(in 1980s)

 simple and robust structure, long-term stability, good timing resolution, easy-maintenance and low cost

→ PKU RPC R&D History

- CMS Muon Trigger RPCs, assembled and tested by PKU (2002)
- Combination of glass RPC & Decay-line Readout (<u>Qite Li et. al.</u>)

→ Glass RPC MT Prototype in 2012

- ♦ Effective area of the electrode: $20 \times 20 \text{ cm}^2$
- Readout electronics: decay-line, charge-division methods

→ Good and stable performance so far!

Positional resolution: ~0.5 mm, detection efficiency: > 90%

(a) Prototype glass RPC (b) One RPC with two structure Compact Muon Solenoid get X and Y signals respectively (a) Crical Board DET 100 av **Ny Court in Thering** Flored Clines foot Glass 50 Graphite Electrop 100.49 LC Datay Line 100 80 ncy (%) 60 Avalanche Threshold Streamer Threshold Efficie 40 20 11000 12000 8000 9000 10000 13000

Efficiency curves for the glass RPC

HV (V)

Exotic DM

- → A new species χ that interacts "strongly" with ordinary matter but that makes up only a tiny fraction $f_{\chi} = \rho_{\chi} / \rho_{\rm DM} \ll 1$ of the total DM mass density
 - Be slowed significantly by scattering with matter in the atmosphere or the Earth before reaching the target, leading to energy depositions in the detector that are too small to be observed with standard methods
 - Be trapped readily in the Earth and thermalize with the surrounding matter.
 - For lighter DM, strong matter interactions allow Earth-bound DM particles to distribute more uniformly over the entire volume of the Earth rather than concentrating near the center.
- → Make the DM density near the surface of the Earth tantalizingly large, up to $\sim f_{\chi} \times 10^{15} \,\mathrm{cm}^{-3}$ for DM mass of 1 GeV
 - * Ordinary DM density $\sim 0.3 \, \mathrm{cm}^{-3}$
- → Almost impossible to detect in traditional direct detection experiments as they carry a minuscule amount of kinetic energy $\sim kT = 0.03 \text{ eV}$

Exotic DM is slowed down near the Earth, and its density is highly enhanced

MMM

- \twoheadrightarrow Motivated by $(g-2)_{\mu}$ anomaly
- \rightarrow M³ (Muon Missing Momentum) based at Fermilab (LINK)
 - New fixed-target, missing-momentum search strategy to probe invisibly decaying particles that couple preferentially to muons
- → Advantage:
 - Bremsstrahlung backgrounds suppressed
 - Bremsstrahlung rate is suppressed by $(m_e/m_\mu)^2 \approx 2 \times 10^{-5}$
 - Compact experimental design
 - Lower muon beam energy (15 GeV vs. 100-200 GeV) allows for greater muon track curvature and more compact design
- → SM-induced BKG are studied

$NA64\mu$

- $\rightarrow Z' U(1)_{L_{\mu}-L_{\tau}} \mod I$
 - * Z' directly couples the second and third lepton generations
 - The extension model: interactions with DM candidates
- → M2 beamline at the CERN Super Proton Synchrotron
 - Incoming muon momentum 160 GeV/c
 - ✤ Total accumulated statistics: $(1.98 \pm 0.02) \times 10^{10}$ MOT
- → Signal process: $\mu N \rightarrow \mu NZ', Z' \rightarrow invisible$
- No event falling within the expected signal region is observed
 - ✤ 90% CL upper limits are set in the (m_{Z'}, g_{Z'}) parameter space of the L_µ L_τ vanilla model, constraining viable mass values for the explanation of (g 2)_µ anomaly to 6 7 MeV < m_{Z'} < 40 MeV, with g_{Z'} < 6 × 10⁻⁴.
 - * New constraints on light thermal DM for values $y > 6 \times 10^{-12}$ for $m_{\chi} > 40$ MeV

82 m

Ref: MMM

VS

Ref: NA64mu

Muon-Electron Threshold Scan

Muon-electron collider <u>CLFV</u>

Process	$M_{Z^{\prime}}$ / GeV	E_{μ} / GeV	E_e / MeV	E_{cm} / GeV
	0.11	0.93	0.511	0.1101
$\mu^+e^- \to e^+e^-$	0.15	11.1	0.511	0.1501
	0.20	28.2	0.511	0.1996
	0.22	33.6	0.511	0.2200
$\mu^+e^- \to \mu^+\mu^-$	0.25	50.2	0.511	0.2499
	0.30	77.2	0.511	0.2998

- μ + e- \rightarrow Z' \rightarrow e+ e-, μ + μ Charged Lepton Flavor Violation
- μ + e- \rightarrow Z' \rightarrow X X Lepton Flavor Violation DM
- Resonant production Enhancement
- X=16.7 MeV Anomaly
- Connecting e-mu collider and muon beam experiments

specific beam energy Leads to specific phase space

