Investigating the future of proton decay searches using paleo detectors

PHYSICS

Cassandra Little NuFact 2024

The Final Frontier for Proton Decay

Sebastian Baum (0,1,* Cassandra Little $(0,2,\dagger$ Paola Sala $(0,3,\ddagger$ Joshua Spitz (0,2,\$ and Patrick Stengel $(0^4,\P)$

¹Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, D-52056 Aachen, Germany ²University of Michigan, Ann Arbor, Michigan 48109, USA ³INFN Milano, via Celoria 16, I-20133 Milano, Italy ⁴INFN Ferrara, via Giuseppe Saragat 1, I-44122 Ferrara, Italy

provide a promising alternative to conventional experiments.

We present a novel experimental concept to search for proton decay. Using paleo-detectors, ancient minerals acquired from deep underground which can hold traces of charged particles, it may be possible to conduct a search for $p \to \bar{\nu} K^+$ via the track produced at the endpoint of the kaon. Such a search is not possible on Earth due to large atmospheric-neutrino-induced backgrounds. However, the Moon offers a reprieve from this background, since the conventional component of the cosmic-ray-induced neutrino flux at the Moon is significantly suppressed due to the Moon's lack of atmosphere. For a 100 g, $10^9 \text{ year old (} 100 \text{ kton} \cdot \text{year exposure)}$ sample of olivine extracted from the Moon, we expect about 0.5 kaon endpoints due to neutrino backgrounds, including secondary interactions. If such a lunar paleo-detector sample can be acquired and efficiently analyzed, proton decay sensitivity exceeding $\tau_p \sim 10^{34}$ years may be achieved, competitive with Super-Kamiokande's current published limit ($\tau_p > 5.9 \times 10^{33}$ years at 90% CL) and the projected reach of DUNE and Hyper-Kamiokande in the $p \to \bar{\nu} K^+$ channel. This concept is clearly futuristic, not least since it relies on extracting mineral samples from a few kilometers below the surface of the Moon and then efficiently scanning them for kaon endpoint induced crystal defects with sub-micron-scale resolution. However, the search for proton decay is in urgent need of a paradigm shift, and paleo-detectors could

arXiv:2405.15845

Proton Decay

- Proton decaying into lighter particles
 - In SM, conservation of baryon number (B) forbids proton decay
 - Many GUTs violate conservation of B
- A good, testable theory of physics beyond the SM and GUT models

Proton Searches Experiments

- Since the 80s
- Proton decay has not been observed

(Super-)Kamiokande, 1982 - now "No.SK3-13"; https://www-sk.icrr.u-tokyo.ac.jp/en/

CL

- Hyper-K & DUNE will probe $\tau_p \sim 10^{34} - 10^{35}$ yrs

Super-Kamiokande has the best published proton decay lifetime limits at 90%

$\tau_p(p \to \bar{\nu}K^+) > 5.9 \times 10^{33} \,\mathrm{yrs}$

K. Abe et al. (Super-Kamiokande), Phys. Rev. D 90, 072005 (2014), arXiv:1408.1195 [hep-ex]

B. Abi et al. (DUNE), Eur. Phys. J. C 81, 322 (2021), arXiv:2008.12769 [hep-ex].

CL

- Hyper-K & DUNE will probe $\tau_p \sim 10^{34} - 10^{35} \, {\rm yrs}$

Money...

Super-Kamiokande has the best published proton decay lifetime limits at 90%

$\tau_p(p \to \bar{\nu}K^+) > 5.9 \times 10^{33} \,\mathrm{yrs}$

K. Abe et al. (Super-Kamiokande), Phys. Rev. D 90, 072005 (2014), arXiv:1408.1195 [hep-ex]

B. Abi et al. (DUNE), Eur. Phys. J. C 81, 322 (2021), arXiv:2008.12769 [hep-ex].

CL

- Hyper-K & DUNE will probe $\tau_p \sim 10^{34} - 10^{35} \, {\rm yrs}$

Money...

Super-Kamiokande has the best published proton decay lifetime limits at 90%

$\tau_p(p \to \bar{\nu}K^+) > 5.9 \times 10^{33} \,\mathrm{yrs}$

K. Abe et al. (Super-Kamiokande), Phys. Rev. D 90, 072005 (2014), arXiv:1408.1195 [hep-ex]

B. Abi et al. (DUNE), Eur. Phys. J. C 81, 322 (2021), arXiv:2008.12769 [hep-ex].

Technology...

CL

- Hyper-K & DUNE will probe $\tau_p \sim 10$

Money...

Is it time for a paradigm shift?

Super-Kamiokande has the best published proton decay lifetime limits at 90%

$\tau_p(p \to \bar{\nu}K^+) > 5.9 \times 10^{33} \,\mathrm{yrs}$

K. Abe et al. (Super-Kamiokande), Phys. Rev. D 90, 072005 (2014), arXiv:1408.1195 [hep-ex]

$$0^{34} - 10^{35}$$
 yrs

B. Abi et al. (DUNE), Eur. Phys. J. C 81, 322 (2021), arXiv:2008.12769 [hep-ex].

Technology...

- A kind of solid state (nuclear) track detector made of (natural) minerals
- Particle interactions cause deformations/damage in lattice structure.
- Observing these tracks since 1960s (material dating)

Uranium tracks in fossil, 1979

Naeser, C. W. "Fission-track dating and geologic annealing of fission tracks." Lectures in isotope geology. 1979

Olivine lattice, Crystallography365

U. Mich. TEM image of Au ion tracks in olivine

Paleo-detectors Track Formation

R. L. Fleischer, P. B. Price, R. M. Walker; Ion Explosion Spike Mechanism for Formation of Charged-Particle Tracks in Solids. *J. Appl. Phys.* 1 November 1965; 36 (11): 3645–3652. https://doi.org/10.1063/1.1703059

For high enough energy deposits, permanent lattice damage occurs

But, what is the threshold?

Electronic stopping power -> proxy for "damage creation power"

Energy deposited as particle traverses material

- Can retain tracks for $>>10^9$ yrs
- Natural minerals can be $>10^9$ yrs old
- Current microscopy technology has sub-nanometer-scale resolution

Mikon Mineralienkontor, mikon-online.com

- Can retain tracks for $>>10^9$ yrs
- Natural minerals can be $>10^9$ yrs old
- Current microscopy technology has sub-nanometer-scale resolution

1 kg would match the Mton-yr exposure of Hyper-Kamiokande and DUNE!

Paleo-detector exposure 100 g x 1G yr = 10 kton x 10 yr

Mikon Mineralienkontor, mikon-online.com

- Can retain tracks for $>>10^9$ yrs
- Natural minerals can be $>10^9$ yrs old
- Current microscopy technology has sub-nanometer-scale resolution

1 kg would match the Mton-yr exposure of Hyper-Kamiokande and DUNE!

Paleo-detector exposure 100 g x 1G yr = 10 kton x 10 yr

 \leq KeV recoil thresholds in laboratory settings

- Neutrons
- Radiative elements naturally occurring in minerals
- Cosmogenic —

- Prompt muons
- Atmospheric neutrinos

- Neutrons
- Radiative elements naturally occurring in minerals
- Cosmogenic

 - Prompt muons
 - Atmospheric neutrinos

- Neutrons
- Radiative elements naturally occurring in minerals
- Cosmogenic
 Get sample from deep underground
 - Prompt muons
 - Atmospheric neutrinos

Proton Decay in a Paleo-detector Detector Material

- Chose Olivine [(Mg,Fe)2SiO4] as our detector material
 - Abundant
 - Forms vacancies for tracks
 - Stable at high temperatures (robust) to annealing)
 - Low concentrations of U & Th

100g and 10⁹ yrs old

- Identify the kaon track
 - Energy of $\mathcal{O}(100)$ MeV
- Identify the proton decay nuclear remnant track?
 - ~2 μm
- Consider kaon track length at stopping power thresholds of
 - 100 MeV/cm: ~1 μm
 - 500 MeV/cm: \gtrsim 6 μ m
 - 1000 MeV/cm: ~ 100 μm

Black dotted lines represent 100, 500, & 1000 MeV/cm stopping power cutoffs.

- Neutrons
- Radiative elements naturally occurring in minerals
- Cosmogenic —

- Prompt muons
- Atmospheric neutrinos

Radiogenic Backgrounds Alpha particles from ²³⁸U

- Natural olivine samples have a wide range of ²³⁸U concentrations
 - We assume 10 ppt
- α -particle tracks $\mathcal{O}(10) \ \mu m \parallel$ Nuclear remnant recoil tracks $\mathcal{O}(10) \ nm$
- α -particle and α -recoil tracks are **clustered**

Nucleus	$T_{1/2}$	Decay
^{238}U	4.5×10^9 years	
$^{234}\mathrm{Th}$	$24.1 \mathrm{~days}$	
234 Pa	$1.17 \mathrm{minutes}$	
$^{234}\mathrm{U}$	2.5×10^5 years	
$^{230}\mathrm{Th}$	8.0×10^4 years	
226 Ra	1,620 years	
222 Rn	$3.82 \mathrm{~days}$	
²¹⁸ Po	3.05 minutes	
$^{214}\mathrm{Pb}$	26.8 minutes	
$^{214}\mathrm{Bi}$	19.7 minutes	
214 Po	1.6×10^{-4} seconds	
$^{210}\mathrm{Pb}$	19.4 years	
$^{210}\mathrm{Bi}$	$5.0 \mathrm{~days}$	
²¹⁰ Po	138 days	
$^{206}\mathrm{Pb}$	Stable	

Radiogenic Backgrounds Alpha particles from ²³⁸U

- α stopping power distribution is different from K⁺
 - Different track characteristics?

Radiogenic Backgrounds Neutrons

Spontaneous Fission

- Neutron induced nuclear recoil tracks < 3 μ m
 - (Proton decay nuclear remnants are ~2 μ m)

- Neutrons
- Radiative elements naturally occurring in minerals

- Prompt muons
- Atmospheric neutrinos

Cosmic Backgrounds Neutrinos

- Tracks from neutrinos > 0.1 GeV
 - Can produce a nuclear recoil remnant
 - Produce secondary particles that can then make their own tracks & secondary nuclear recoils Including kaons

Atmospheric Neutrinos

- Current τ_p limit corresponds to \lesssim 6 kaons/100g/Gyr
- Atm. ν create ~400 kaons/100g/Gyr

What can we do?

To the Moon! Atmospheric Neutrino Backgrounds

• Lunar ν create ~0.5 kaons/100g/Gyr

Olivine; $C^{238} = 0.01 \text{ ng/g}$; no (dE/dx) cut 10^{12} 50 bins per decade Background spectra 10^{11} rad. n*p*-decay spectra 10^{10} rad. α of tracks/bin/100 g/Gyr nuclear remnant 10^{9} SF frag. 10^{8} atm. ν lun. ν (w/o p) 10^{7} lun. ν (p) 10^{6} 10^{5} 10^{4} 10^{3} # 10^{2} 10 0.1 10^{-2} 10^{2} 10^{3} 0.1 10^{4} 10 Track length $[\mu m]$

Neutrino Flux, $E_{\nu}^2 \Phi_{\nu}^{\text{Earth}} [\text{GeV m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

27

Cosmic Backgrounds Muons

- From lunar regolith ullet
- Produce energetic neutrons and spallation fragments (Including kaons) ullet

This flux depends on depth!

	5 km	6 km	\gtrsim 10 km
Lunar (prompt) Muon Flux	10 ³ cm ⁻² Gyr ⁻¹	10 ² cm ⁻² Gyr ⁻¹	< 10 ⁻² cm ⁻² Gyr ⁻¹
Lunar Fast Neutron Flux	~ 10 ² cm ⁻² Gyr ⁻¹	~ 10 cm ⁻² Gyr ⁻¹	~ 10 ⁻³ cm ⁻² Gyr ⁻¹

• At 5 km, ~0.1 kaons/100g/Gyr on the moon

Background Summa

- ²³⁸U induced tracks are clustered and have different
- Can't see proton decay nuclear remnant tracks over the neutron background •
- ν produce ~0.5 kaons/100g/Gyr
- At 5 km, ~0.1 kaons/100g/Gyr from muon flux. At 10 km, muon flux is $< 10^{-2}$ cm⁻²Gyr⁻¹

$$\mathbf{f}$$

NewScientist

Space

Physicists want to drill a 5-kilometredeep hole on the moon

Going deep into lunar rock could give us an opportunity to see if protons can decay into something else – a finding that could help us unify conflicting physics theories

By Alex Wilkins

💾 7 June 2024

f 🗶 🖸 in 🕌 🖬 🖶

What the Future Holds

- Ongoing research into
 - Feasibility of identifying kaon tracks

noscale XRM

100 nm

and evolving! Current pursuit: nano-CT (X-ray) techniques.

1 nm

10 nm

3D Bull

Michigan ion beam lab and recent track image

There are many options in microscopy and the technology is always improving

Submicron microCT

XRM

10 µm

Backup

