
Achilles

Joshua Isaacson 25th International Workshop on Neutrinos from Accelerators 17 September 2024

Motivation

- Number of events in near / far detector
- Oscillation probability
- Neutrino-nucleus cross section
- Migration matrix (Depends on topology of events)
- Need theory driven neutrino event generators

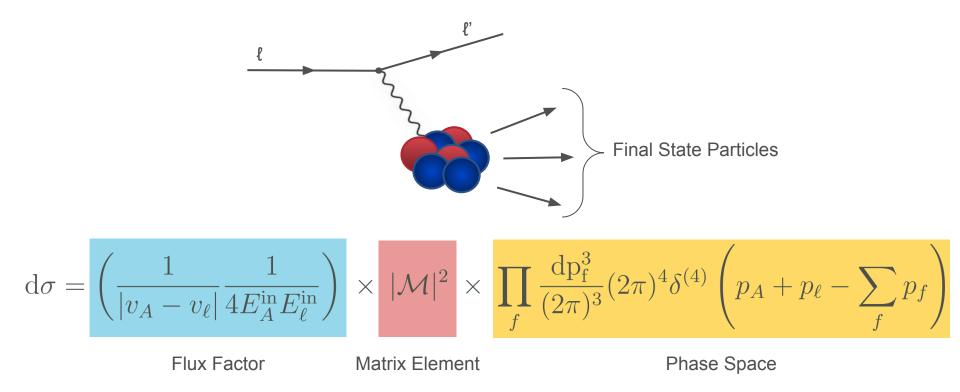
Achilles: A CHIcagoLand Lepton Event Simulator

Project Goals:

- Theory driven
- Leverage experiences from LHC event generators
- Develop modular neutrino event generator
- Provide automated BSM calculations for neutrino experiments
- Evaluate theory uncertainties
- Appropriately handle correlations within events

.d8bo88b.d d8' `8b d8P Y8 8800088 8P 8 88~~88 8b 8 88~~88 8b 8 88 88 Y8b d8 8 YP YP `Y88P' Y	38 88 `88' 3800088 88	88 88 88 88booo.	88 88 88 88booo.	88' 8800000 88~~~~ 88.	88' YP `8bo. `Y8b. db 8D		
88888888888888888888888888888888888888	38888888888888888888888888888888888888		38888b. 38888888 388888888 388888888 388888888	38888b. 3888888b. 38888888b. 38888888888	38 1 38288 1 38288 1 38288 1 38288 1 382888 1 382888 1 382888 1 382888 1 382888 1 382888 1 382888 1 38288 1 38288 1 3828 1 3828 1 392 1 393 1		
Version: 1.0.0 Authors: Joshua Isaacson, William Jay, Alessandro Lovato, Pedro A. Machado, Luke Pickering, Noemi Rocco, Noah Steinberg Undergraduate Student Contributions:							

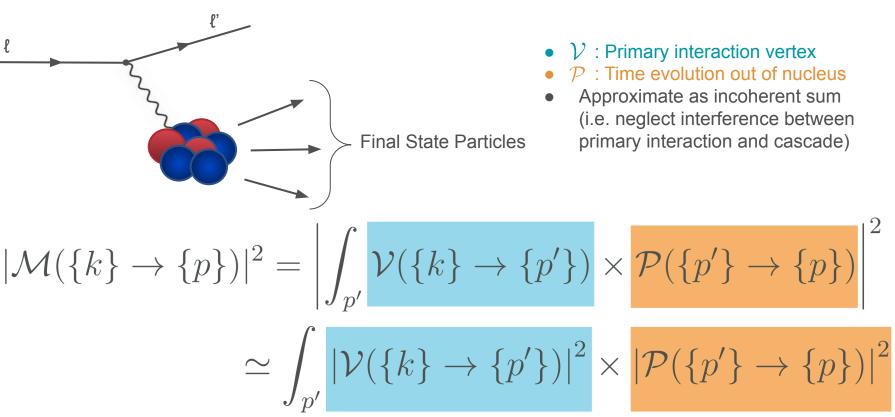
Diego Lopez Gutierrez, Sherry Wang, Russell Farnswort



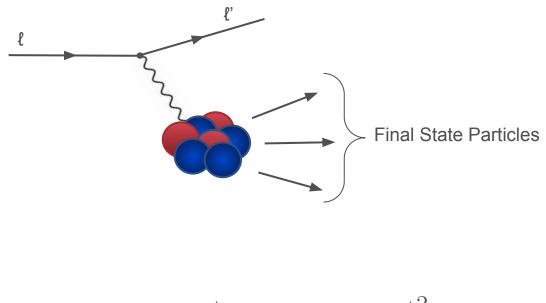
Isaacson, Jay, Lovato, Machado, Rocco [2007.15570], Isaacson, Jay, Lovato, Machado, Rocco [2205.06378],

Simulating the Standard Model

Calculation Breakdown



Joshua Isaacson


Achilles: NuFact 2024

🛠 Fermilab

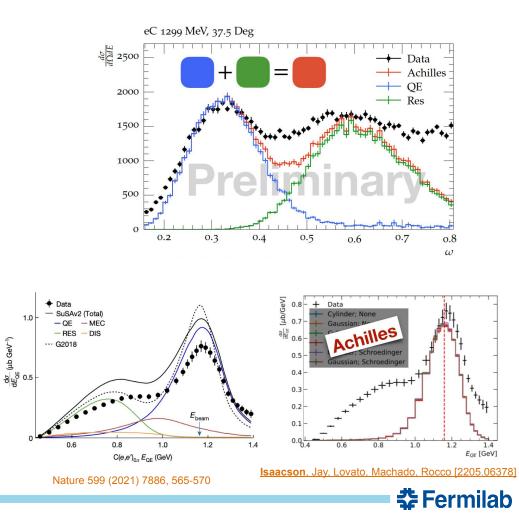
Calculation Breakdown

Hadronic Current and Leptonic Current

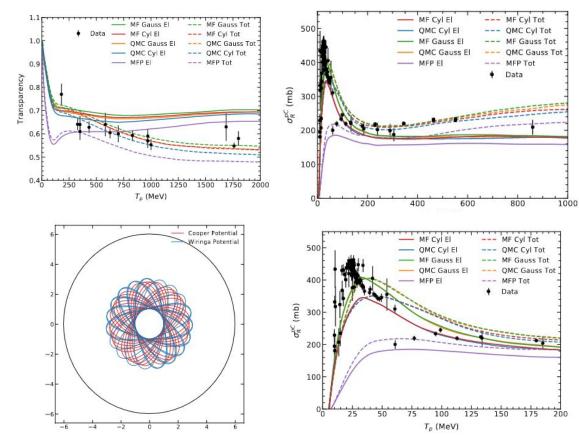
$$|\mathcal{M}|^2 \propto \left|\sum_i L^{(i)}_\mu W^{(i)\mu}
ight|^2$$

- $L^{(i)}_{\mu}$: Leptonic Current
- $W^{(i)\mu}$: Hadronic Current
- Sum goes over possible exchange bosons
- Automatically handles interference effects (important for BSM)
- Easy extension point in Achilles to implement new nuclear models
- Less bookkeeping than handling tensors, but tensors possible if needed

Primary Interaction


- Electroweak currents from nuclear theory: $J^{\mu}(q) = \sum_{i} j_{i}^{\mu}(q) + \sum_{i < j} j_{ij}^{\mu}(q) + \cdots$ Impulse Approximation with SF:

 $|\Psi_f\rangle = |p\rangle \otimes |\Psi_f^{A-1}\rangle$


Express in terms of leptonic and hadronic currents interferences come for free

$$\mathcal{V} = \sum L^{(i)}_{\mu} W^{\mu(i)}$$

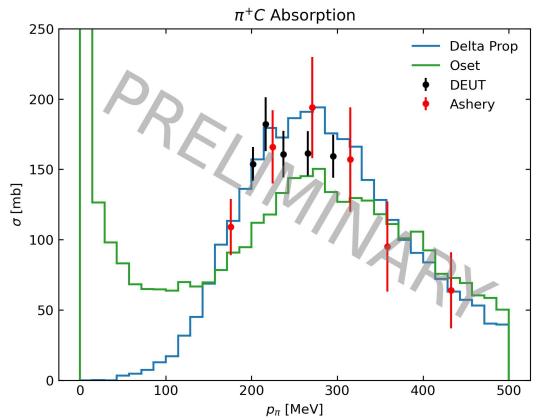
- Have Quasielastic, Resonance (DCC model), One-body-two-body interference implemented
- Important to validate against electron scattering data using same framework (i.e. same code)

Intranuclear Cascade:Nucleons

- Novel cascade using nuclear configurations
- Interaction between nucleons treated as probabilistic model inspired from LHC

$$P(b) = \exp\left(-\frac{\pi b^2}{\sigma}\right)$$
$$P(b) = \Theta\left(\pi b^2 - \sigma\right)$$

- Propagation either straight-lines or in optical potential using classical evolution
- In-medium cross-section corrections from Pandharipande-Pieper
- Incorporate Pauli-blocking and formation zone

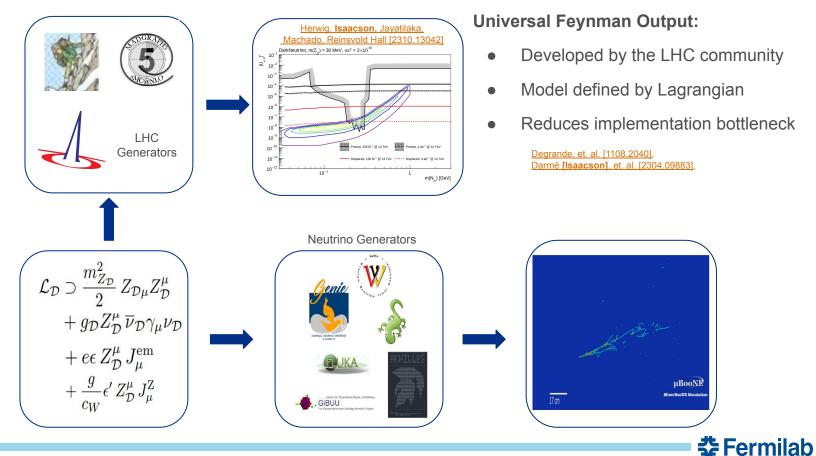

Fermilab

Intranuclear Cascade: Pions

- Multiple approaches to estimate model uncertainty:
 - a. Propagate Deltas through the cascade based on single pion-exchange Nuclear Phys. A 459 (1986) 503-524
 - b. One-step absorption probability based on Oset Nuclear Phys. A 484 (1988) 557-592 With the DCC octet meson-baryon interactions, including hyperons Phys. Rev. C 88, 035209
- Propagating Delta approach does not contain any in-medium modifications yet, currently only has Delta(1232) resonance, and missing background channel:

$\pi NN \to NN$

 Oset model includes both 2-nucleon and 3-nucleon absorption rate, but kinematics only two body final state

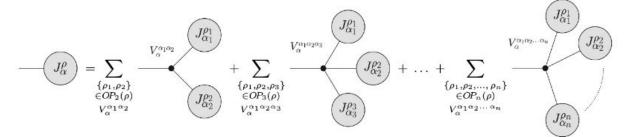

Achilles: NuFact 2024

Fermilab

Simulating Beyond the Standard Model

Beyond the Standard Model

Joshua Isaacson

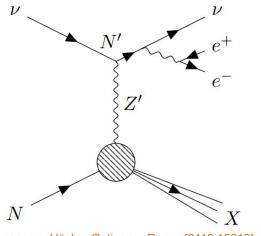

Beyond the Standard Model

Automated Matrix Element Calculation:

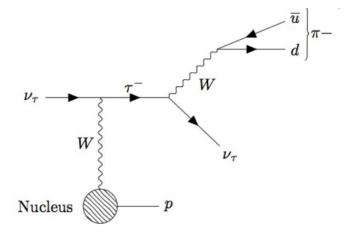
Berends and Giele [Nucl. Phys. B 306 (1988) 759-808, Höche et al. [1412.6478], Isaacson, Höche, Gutierrez, Rocco [2110.15319],

- Use recursive definition for (off-shell) currents: $(current) = (propagator) \times \sum (vertex) \times (subcurrents)$
- Current limitations in Achilles:
 - Only handle scalar, spin-1/2, spin-1 particles
 - Requires spin-1 probe of nucleus
 - Color-singlet particles only

Ex	kamp	ole Vertex:
(- H)		$\overline{\psi}$
$(\gamma^\mu)_{ab}\overline{\psi}_a\psi_b$	=	$\mu - (\gamma^{\mu}) \psi$


🛠 Fermilab

Spin Correlations

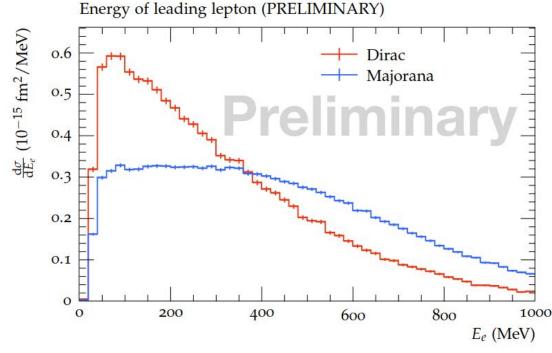


Spin Correlations

- Two methods to handle spin-correlations in primary interaction
 - a. Generate the full 2-to-n body phase space
 - b. Propagate the spin-density matrix
- Both methods available in Achilles
- Spin-density better when having to mix two different EFTs together (i.e tau decay)

Isaacson, Höche, Gutierrez, Rocco [2110.15319]

Isaacson, Höche, Siegert, Wang [2303.08104]


Spin Correlations: 2 to n-body scattering

- Full phase space → separation of Dirac and Majorana
- GENIE includes this model, but handles it with repeated decays
 → only can simulate Majorana case (no spin correlations)

Image generated by the MicroBooNE collaboration using Achilles

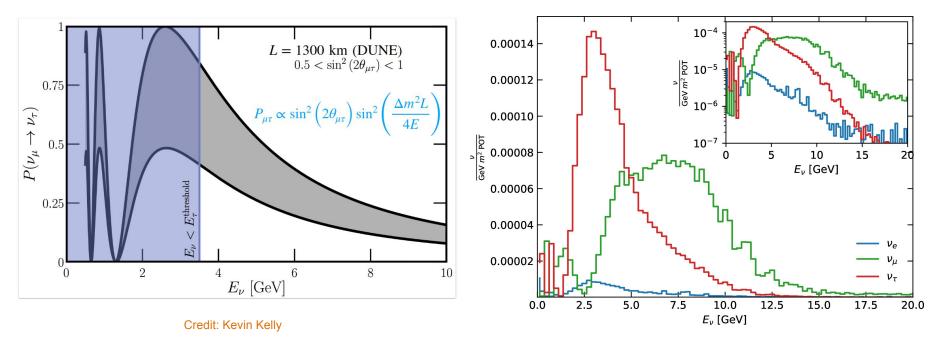
Example: Dark Neutrino explanation of MiniBooNE [E. Bertuzzo, et. al. arXiv:1807.09877]

[🛟] Fermilab

Joshua Isaacson

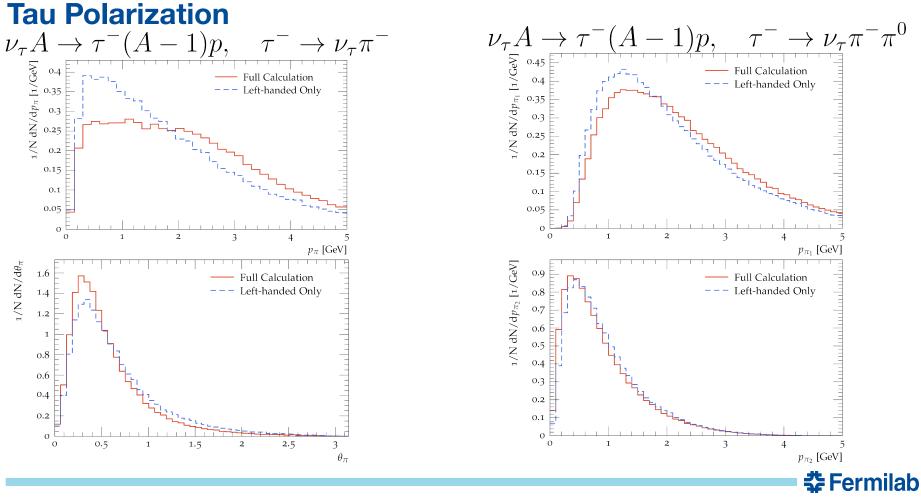
Spin Correlations: Spin-Density Matrix

- Recursive algorithm that conserves spin correlations
- Decay unstable particle from hard interaction selected randomly
- Continue down chain until all particles are stable
- Keep track of spin-density matrix, constrained by conservation of probability

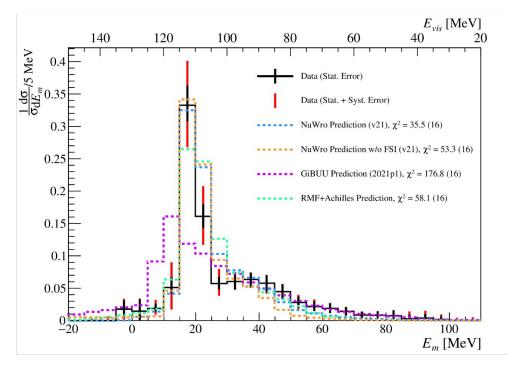

Momentum of decay products generated according to:

$$\rho_{\lambda_0\lambda_0'} \times \mathcal{M}_{\lambda_0;\lambda_1...\lambda_k} \mathcal{M}^*_{\lambda_0';\lambda_1'...\lambda_k'} \times \prod_{i=1,k} D^i_{\lambda_i\lambda_i'}$$

- Initial spin-density matrix
- Amplitude for decay
- Decay matrix (calculated during algorithm)



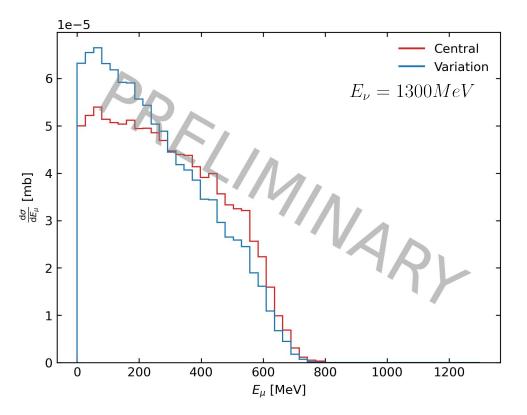
Tau Polarization



L. Fields, "DUNE Fluxes," https://glaucus.crc.nd.edu/DUNEFluxes/

‡ Fermilab

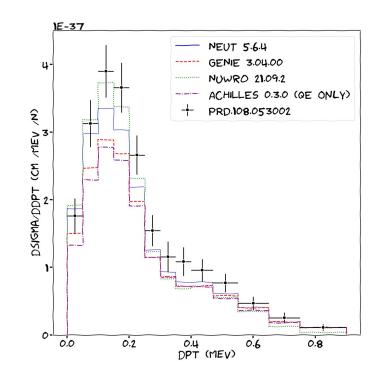
Achilles in KDAR measurement



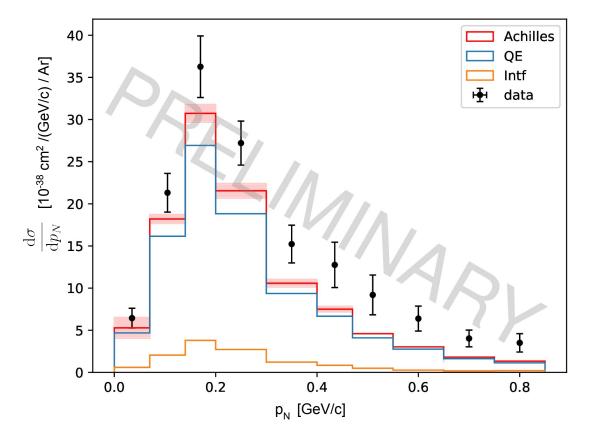
[JSNS² Collaboration, 2409.01383]

- First use of Achilles by an experimental analysis
- Comparison similar to NuWro without FSI, better than GiBUU
- Achilles almost ready for use by SBN experiments
- Should be ready for wide usage (all needed processes) by early 2025

On-the-Fly Variations (in progress)



- Calculate variation of physics parameter at run time (ex. Changing form factors, spectral functions, etc.)
- Only evaluate for accepted event
- Based off of developments for the LHC [1606.08753]


Standardization Efforts

- Expand HepMC3 (NuHepMC) format used by the LHC and EIC community to be the standard in the neutrino community
- Standard workflows reduce overall maintenance burden and amount of repeated effort within the community
- Ongoing effort to develop a standardized flux and geometry community tool

🛠 Fermilab

Automatic Data Comparison with Nuisance v3 (in progress)

- Automatically download analysis, data, flux, etc. from HepData
- Launch Achilles with required setup automatically
- Appropriately handle correlated uncertainties
- Data from MicroBooNE
 experiment [2310.06082]

Fermilab

Conclusions

- Extracting underlying physics parameters requires accurate modeling of the underlying theory
- Largest systematic uncertainty arises from event generator modeling of cross-sections
- Achilles includes Quasielastic, Resonance production, and 1b2b interference
- Novel intranuclear cascade, now including pion interactions and absorption
- Automating BSM is vital for a robust BSM program
- Handling spin correlations will be critical for any process beyond $2\rightarrow 2$ scattering

On-Going Work and Future Goals:

- Quickly approaching complete generator ready for experimental usage (e4v and neutrino)
- QED radiation
- On-the-fly uncertainty propagation
- Efforts to help standardize input and output formats to benefit the community
- Automatic comparison to data through Nuisance v3

🛠 Fermilab

Achilles: A CHIcagoLand Lepton Event Simulator

(F. AT, I2)- (-

Core Authors

Undergraduates

. d8	3b.	. 08	8b.	db	db	d888888b	db	db	d88888b	.d8888.
d8 '		d8P	Y8	88	88	`88'	88	88	88'	88' YP
8800	8800	8P		880	8800	88	88	88	8800000	`8bo.
88~~	~88			88~	~~88	88	88	88	88~~~~	`Y8b.
88	88	Y8b	d8	88	88	.88.	88booo.	88booo.	88.	db 8D
		`Y8	8P'			Y888888P	Y88888P	Y88888P	Y88888P	`8888Y'

Version: 1.0.0 Authors: Joshua Isaacson, William Jay, Alessandro Lovato, Pedro A. Machado, Luke Pickering, Noemi Rocco, Noah Steinberg

Undergraduate Student Contributions: Diego Lopez Gutierrez, Sherry Wang, Russell Farnsworth

Joshua Isaacson