New results and status of the JSNS² / JSNS²-II

NuFact 2024 The 25th International Workshop on Neutrinos from Accelerators Sep 16-21, 2024 Argonne National Laboratory

Dongha Lee (KEK)

JSNS² / JSNS²-II Collaboration (<u>J-PARC</u> <u>Sterile</u> <u>Neutrino</u> <u>Search at</u> <u>J-PARC</u> <u>Spallation</u> <u>Neutron</u> <u>Source</u>)

KEK JAEA J-PARC Tsukuba University Osaka University Tohoku University Kitasato University Kyoto Sangyo University

Soongsil University Dongshin University Seoyeong University Kyung Hee University Gwangju Institute of Science and Technology Seoul National University of Science and Technology Sungkyunkwan University Chonnam National University Jeonbuk National University Kyungpook National University

Brookhaven National Laboratory University of Michigan University of Utah

Dongha Lee

Sun Yat-sen University

University of Sussex

5 countries 23 institutions ~60 collaborators

JSNS² / JSNS²-II Papers in recent

- Y.Hino et al, "Characterization of the correlated background for a sterile neutrino search using the first dataset of the JSNS² experiment", Eur. Phys. J. C (2022) 82: 331 (arXiv:2111.07482 [hep-ex]) (Commissioning runs)
- C.D.Shin et al, "The acrylic vessel for JSNS²-II neutrino target", 2023 JINST 18 T12001 (arXiv:2309.01887 [hep-ex])
- D.H.Lee et al, "Study on the accidental background of the JSNS² experiment", Eur. Phys. J. C 84, 409 (2024) (arXiv:2308.02722 [hep-ex])
- T.Dodo et al, "Pulse Shape Discrimination in JSNS²", arXiv:2404.03679 [physics.ins-det] (Under review @ PTEP)
- E.Marzec et al, "First Measurement of Missing Energy Due to Nuclear Effects in Monoenergetic Neutrino Charged Current Interactions" (arXiv:2409.01383 [hep-ex], submitted to PRL)

• D.H.Lee et al, "Evaluation of the performance of the event reconstruction algorithms in the JSNS² **Calibration/ Provide a 252** Cf calibration source", arXiv:2404.04153 [hep-ex] (under review @ NIMA)

Indication of a sterile neutrino ($\Delta m^2 \sim 1 eV^2$)

• Anomalies, which cannot be explained by standard neutrino oscillations for a few tens years are shown.

Experiments	Neutrino source	Signal	Significance	E (MeV)	L (m)
LSND	µ Decay-At-Rest	$\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$	3.8σ	40	30
MiniBooNE	π Decay-In-Flight	$\nu_{\mu} \rightarrow \nu_{e}$	4.8σ	800	600
		$\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$			000
BEST	e capture	$\nu_{\mu} \rightarrow \nu_{x}$	4.2σ	<3	10
Reactors	Beta decay	$\bar{ u_{\mu}} \rightarrow \bar{ u_{\chi}}$	3.0σ	3	10-100

• JSNS² uses the same neutron source(μ), target(H) and the detection principle (IBD) as the LSND. => Even if the excess is not due to the oscillation, we can catch this directly. => Two advantages : short-pulsed beam / Gd-LS give excellent S/N ratio.

JSNS²: J-PARC E56 **JSNS2-II: E82** Sterile v search @MLF 3GeV RCS

http://research.kek.jp/group/mlfnu/eng

30GeV MR

Neutrino Beams (to Kamioka)

Materials and Life **Science Experimental** Facility (MLF)

J-PARC Facility (KEK/JAEA)

South to North

Hadron hall

Low duty factor beam (short pulse + small repetition rate) gives excellent S/N ratio.

25Hz, 1MW (design)

0.6-0.7MW (2021) 0.7-0.8MW (2022) 0.84MW (2023) 0.73-0.95MW (2024)

Dongha Lee

JSNS² detector

Nucl. Instrum. Methods A 1014 165742 (2021)

	Liquid	Volume
Target	Gd-LS + DIN(10%)	17 tons
Gamma-catcher & Veto	pure LS	31 tons

- 96 10" PMTs for the Inner Detector
- 24 10" PMTs for Veto

Operation of Near Detector

- Data taking
 - Commissioning (2020)
 - 4 long term physics run (2021-2024)

- 1MW beam power (Design)
 - Achieve 1MW @ RCS extraction point
 - 0.95MW @MLF

• 4.85x10²² POT so far - 43% of approved POT

Dongha Lee

0.95MW!! Hourly POT

22/07/02

22/12/31

20107101

20/12/31

21/07/01

21/12/31

23107102

How to detect sterile neutrino signal

Sterile neutrino oscillation during 24m b

- Detection by coincidence of IBD (Inverse => Prompt : e+ signal
- => Delayed : gammas from neutron capture on gadolinium (Gd)

Dongha Lee

baseline.		Timing	Ener
Beta Decay)	Prompt	2 <t<sub>beam<10µs</t<sub>	20~60
	Delayed	$\Delta T_{p-d} < 100 \mu s$	7~12 N

+ Spatial correlation cut $\Delta VTX_{p-d} < 60cm$

²⁵²Cf 3D calibration : Energy/Vertex reconstruction

under review @ NIMA Reconstruction Parameters were studied based on this calibration => Reconstruction performances were checked using ²⁵²Cf and Michel electrons data sample

~10% fiducial volume uncertainty

Dongha Lee

O(0,0) = chimney entranceFixed Free Wire Pivot 5(r.z)

(NEW ²⁵²Cf 3D calibration system -> Any of position (R&Z) can be covered!!!

arXiv:2404.04153

[hep-ex],

Manipulate the pipe

Toward the sterile neutrino search (Blind analysis)

- PSD : arXiv:2404.03679 [physics.ins-det], under review @PTEP - Accidental background : Eur. Phys. J. C 84, 409 (2024)

Toward the sterile neutrino search (Blind analysis)

- We are doing the blind analysis to search a sterile neutrino, by using the energy side-bands.
- The rates in the side-band regions will be predicted by the control samples driven by data
- Now, side-band 4 (prompt 60-100MeV) data are opened!!!

VS

Side-band 1&3 are being studied now.

Observation

Physics data with criteria : xx<Ep<yy MeV zz<Ed<ww MeV $\Delta T_{p-d} < 100 \mu s$ $\Delta VTX_{p-d} < 60cm$

Purely data-driven control sample

Expectation

- Fast neutrons -> obtained at T_{beam} > 1ms
- Accidental background -> obtained with specific

calibration runs

The comparison between the observation vs expectation for Side-band4 (prompt 60~100MeV)

Dongha Lee

*2022 physics data (0.8x10²² POT)

		# of Observation	# of Expe
		events	ever
ons	Total	818 +- 28.6 (stat) + 6.0 (sys)	839.3 +- 3 +- 2.6
	Fast neutrons		835.3 +- 3 +- 2.5
	Accidental		4.0 +- 0. +- 0.07

Good consistency between **Observation vs Expectation !!!**

- Cosmogenic fast neutrons are dominated => Aim to ~99% rejection => Pulse Shape Discrimination (PSD) would reject most of them (arXiv:2404.03679 [physics.ins-det])
- After applying PSD, accidental bkg will be also crucial. (Eur. Phys. J. C 84, 409 (2024))
- (Preliminary) energy scale systematic uncertainties are much less than stat. error

Pulse Shape Discrimination (PSD)

• Fast neutrons can mimic the IBD signals from electron anti-neutrino.

 Pulse Shape Discrimination (**PSD**) by using the difference of waveforms between e-like and n-like.

 Data-driven likelihood method (Control sample : Michel electron / Fast neutron) => Full information of waveform height are used. => Each PMT has its own PDF and separation power.

20 40

 10^{-}

 10^{-2}

10-

Cosmic ray muons Concrete, Iron, etc 💆

Study of the accidental background

125µs time window triggered data (special calibration run)

 Accidental background can be estimated by the multiplication of the **Single Rates of Prompt/Delayed.**

Single Rates(/spill) of Prompt/Delayed events

Dongha Lee

 Accidental background means just randomly paired events of the IBD signal coincidence selections.

$$R_{acci} = R_p \times R_d \times \varepsilon_c$$

	Values
Prompt rate/spill	(2.20 +- 0.09) x
Delayed rate/spill	(1.80 +- 0.01) x

Eur. Phys. J. C 84, 409 (2024)

Study of the accidental background

• Not only the single rates, also any variable such as ΔVTX_{p-d} can be obtained from the data-driven control sample of random pairs.

 For reduction of accidental background, the events $\Delta VTX_{p-d} < 60cm$ are selected.

	Values	
Prompt rate/spill	(2.20 +- 0.09) x 10 ⁻⁴	Da
Delayed rate/spill	(1.80 +- 0.01) x 10 ⁻²	Da
ϵ ($\Delta VTX_{p-d} < 60cm$)	5.1 +- 0.1%	Da
ε (Timing Liklihood)	46%	N
Acci rate/spill/0.75MW	(9.29 +- 0.42) x 10 ⁻⁸	

• JSNS² has a comparable accidental rate as the <u>expected IBD signal rate</u> Still will be <u>4.59 x 10⁻⁸ /spill /1MW.</u> **improved further !!!** (based on the LSND best fit oscillation parameters)

Eur. Phys. J. C 84, 409 (2024)

${}^{12}C(v_e,e^-){}^{12}N_{g.s.}$ measurement

- Preparing a paper now

- with Hg p (3GeV) reaction, so far.
- a normalization of IBD signals.

- 2021 & 2022 physics data (2.2x10²² POT)
- Observed CNgs candidates
- : 79 events
- Background events
- : 42.2 +- 6.5 (stat.) +- 1.7 (syst.)

- The accidental background is dominant. => estimated by normalization from large ΔVTX region.
- All distributions for selected variables seem to be reasonable.

Neutrino flux measurement

Dongha Lee

* For cross section,

the combined value of LSND (Phys. Rev. C 64:065501 (2001)) +KARMEN (Prog. Part. Nucl. Phys. 40, 183 (1998)) is used.

KDAR neutrino measurement

- arXiv:2409.01383 [hep-ex], submitted to PRL

Kaon Decay-At-Rest neutrino measurement

GeV)

сщ

(10⁻³⁸

- KDAR neutrinos have a KNOWN mono-energy (235.5MeV)
- Few cross-section measurements below 1GeV so far.
- Nuclear effects measurements -> some progress in this study

 Detection by double coincidence => Prompt : muon and proton => Delayed : electron from muon decay

- 2021 physics data is used. (1.4x10²² POT)
- KDAR candidates : 621 events
- Best Fit Bkg : $144.4^{+21.3}_{-21.1}$ events (π DIF v dominant)

KDAR Results

- <u>The First measurement of Missing Energy</u> due to nuclear effects (shape-only analysis) => By using the KNOWN neutrino energy. $(E_m \text{ (missing energy)} = E_\nu - m_\mu - E_{vis})$ => Unfolded E_{vis} is used. Standard candle for improving the understanding of the low energy neutrino-nucleus interaction.
- arXiv:2409.01383 [hep-ex], submitted to PRL

Status of JSNS²-II

JSNS²-II : the second phase of JSNS²

- New Far Detector => Almost identical structure with ND. => Target : 32tons of Gd-LS. => 48m baseline, outside of MLF building.
- Two detectors (ND+FD) with two baselines (24m, 48m) => The sensitivity at low Δm^2 region will be much improved. => A solid conclusion on LSND anomaly.
- FD construction since 2021. => Expected to begin data taking in early 2025.

Dongha Lee

MLF 🚦 near 学実験施設 Google Maps, Image © 2024 Google m²[eV²/c⁴] 10⁻¹ [(Expected) JSNS² 3years + **JSNS²-II 5 years** 10^{-2} 10^{-3} **10**⁻¹ 10⁻² sin²20

Summary

- 4 long term physics run (2021-2024) => 950kW @MLF in 2024 (Design 1MW is achieved at RCS extraction point)
- Blind analysis (energy side-bands) for the sterile neutrino search => Good consistency between Observation vs Expectation for a side-band so far.
- CNgs measurement => Neutrino flux measurement has a good consistency with prediction.
- KDAR measurement => With known neutrino energy (235.5MeV), the first measurement of the missing energy.
- JSNS²-II : the second phase => Now climax of New Far Detector construction.

Dongha Lee

Backup

Expected Sterile neutrino sensitivity (JSNS²)

	$\begin{array}{l} sin^2 2\theta = 3.0 \times 10^{-3} \\ \Delta m^2 = 2.5 eV^2 \end{array}$	87
Signal	(Best fit values of MLF) $cim^2 20 = 2.0 \times 10^{-3}$	
	$\Delta m^2 = 3.0 \times 10^{-2}$ $\Delta m^2 = 1.2 eV^2$	62
	(Best fit values of LSND)	
	$\overline{\nu}_e \text{ from } \mu^-$	43
	${}^{12}C(\nu_e, e^-){}^{12}N_{g.s.}$	3
background	beam-associated fast n	≤ 2
	Cosmic-induced fast n	negligible
	Total accidental events	20

1MW x 3years (100% approved POT)

