Gibuu@faser

Ulrich Mosel, Kai Gallmeister

Institut für Theoretische Physik JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

- GiBUU : Quantum-Kinetic Theory and Event Generator based on a BM solution of Kadanoff-Baym equations, allows for off-shell propagation
- GiBUU propagates phase-space distributions, not particles
- Physics content and details of implementation in: Buss et al, Phys. Rept. 512 (2012) 1-124
- Code from <u>gibuu.hepforge.org</u>, new version GiBUU 2023 add. details in Gallmeister et al, Phys.Rev. C94 (2016) 3, 035502, Phys.Rev.D 109 (2024) 3, 033008, v 2024 later this year.

GIESSEN

FASER Flux

v Faserflux

Flux from: Max Fieg, UC Irvine

Peaks around 100 – 200 MeV, Tails out to 2 TeV

Target is heavy nucleus: W

Physics@FASER

- DIS is dominant, QE, RES, etc negligible
 DIS in GiBUU is handled by PYTHIA string fragmentation
- At these high energies: are the targets relevant?? Long formation times will cause to create ,real' hadrons only outside the nucleus?

- Are final state interactions are essential? :
 - Production and formation times of these hadrons?
 Physical hadrons produced inside or outside the target?

Hadronization

Central Question: how do the final state hadronic cross sections emerge after a hard elementary process?

Does the target (W) matter for exclusive events?

String-breaking in PYTHIA

Leading particles connected with hard interaction 3 times for each hadron

1. Production V1 : String Breaking

2. Production V2 : String-Breaking

3. Formation: Quark lines meet

PYTHIA's formation times

K. Gallmeister, T. Falter *Phys.Lett.B* 630 (2005) 40-48 Times extracted from PYTHIA

 $\mathsf{Z}=\mathsf{E}_{\mathsf{h}}\,/\,\nu$

The higher the hadron's energy the larger the formation time
 → high z hadrons form outside the nuclear target -> no FSI
 → Low z hadrons (high multiplicity events) form inside the nuclear target -> Final State Interactions may be relevant depends on ,prehadronic' interactions during formation

Hadronization in DIS events

GiBUU can (has) been used to study hadronization at

 HERMES (28 GeV) and EMC (280 GeV), uses nuclear radius to determine formation times and prehadronic cross sections.

Prehadron Cross Sections

K. Gallmeister, U. Mosel, Nucl. Phys. A 801 (2008) 68-79, MDPI Physics 4 (2022) 2, 440-450

Only linear dependence on time fits data over wide kinematical range!

NUFACT 2024

 $z = E_h / v$

Cross Section during Hadronization

Dominated by DIS, have to worry about Color Transparency in FSI:

$$\frac{\sigma^*(t)}{\sigma} = X_0 + (1 - X_0) \cdot \left(\frac{t - t_P}{t_F - t_P}\right), \quad X_0 = r_{\text{lead}} \frac{\text{const}}{Q^2}, \quad \text{Farrar},$$

Farrar, Strikman et al

describes JLAB and HERMES hadronization data, also EMC

HERMES@27 GeV

Airapetian et al.

FASER inclusive kinematics

Multiplicities at FASER: FSI

FSI effects on multiplicities at I TeV

Dramatic ,avalanche effect' on baryon multiplicity pions are there from the first (string) decay on, less affected

Target: W, 1 TeV

Hadron Spectra at FASER flux

Qualitatively similar to lower neutrino energies (MINERvA)

Protons show ,avalanche effect' (multiple collisions through final state interactions), Pions are there from the start, not much affected by FSI

NUFACT 2024

USTUS-LIEBIG

Σ + Spectrum

vA Questions for FPF

JLAB 2021

Where isColor Transparency ???

EMC effect for neutrinos, tension with electrons

K. Gallmeister, U.M., Nucl. Phys. A 801 (2008) 68 Time Dependent Hadronization via HERMES and EMC Data Consistency

Final state interactions; Problems

Frozen density approximation, used e.g. in mean free path approaches ???

At very high energies target nucleus will break up
 Target is ,time-dependent', target nucleons also have to be propagated

GiBUU allows for such a ,time-dependent target' , and density change

 BUT: approximate this by changing so far only target A (saves computer time!)

Summary

- FASER flux baryon spectra are sensitive to formation times and prehadronic cross section developments
 - \rightarrow FSI are essential even at very high energies of FASER
- FASER may add to solutions of problems of
 - Color Transparency and
 - EMC effect for neutrinos
 - Hadronization times at low z
- Same physics at EIC: also there FSI are essential, but so far have not been considered in detail.

