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Outline
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• Lepton - nucleus interactions : GFMC

• Lepton - nucleus interactions : BSM scenarios

• Lepton - nucleus interactions : Factorization Scheme

• Bayesian Artificial Neural network
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Ab initio Methods
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Energy transfer !!e ⇠
q2

2m

QE

Meson Exchange

d�

 Ab-initio methods (CC, IMSRG, SCGF, 
QMC, etc) provide accurate predictions 
for ground state properties of nuclei + 
response functions in the low/moderate 
energy region
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Many-Body method: GFMC
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QMC techniques projects out the exact lowest-energy state: e�(H�E0)⌧ | T i ! | 0i

Nuclear response function involves evaluating a number of transition amplitudes. 

Valuable information can be obtained from the integral transform of the response function

E↵�(�,q) =

Z
d!K(�,!)R↵�(!,q) = h 0|J†

↵(q)K(�, H � E0)J�(q)| 0i

Inverting the Laplace transform is a complicated problem A. Lovato et al, PRL117 (2016), 082501, 
PRC97 (2018), 022502 
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [47].
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [47].

Inclusive results which are virtually correct in the QE 

Relies on non-relativistic treatment of the kinematics

Different Hamiltonians can be used in the time-
evolution operator

Can not handle explicit pion degrees of freedom

—electron-4He scattering 
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Axial form factor determination
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• Alternative derivation based on z-expansion 
—model independent parametrization

A.S.Meyer et al, Phys.Rev.D 93 (2016) 11, 113015

5

where ni is the number of events in the ith bin, and µi is
the theory prediction (7) for the bin. Errors correspond
to changes of 1.0 in the �2LL function.

Because we do not use an unbinned likelihood fit, we
do not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting sta-
tistical uncertainties are approximately equal, and only
FNAL shows a discrepancy in central value. A similar
exercise was performed in Refs. [66, 74, 75], and similar
results were obtained. Having reproduced the original
analyses to the extent possible, we will proceed with the
updated constants as in the final column of Table I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor
shape represents an unquantified systematic error. We
now remove this assumption, enforcing only the known
analytic structure that the form factor inherits from
QCD. We investigate the constraints from deuterium
data in this more general framework. A similar analysis
may be performed using future lattice QCD calculations
in place of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FA(q
2) =

1

⇡

Z 1

tcut

dt0
ImFA(t0 + i0)

t0 � q2
, (11)

where tcut = 9m2
⇡ represents the leading three-pion

threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [31],

z(q2, tcut, t0) =

p
tcut � q2 �

p
tcut � t0p

tcut � q2 +
p
tcut � t0

, (12)

where t0, with �1 < t0 < tcut, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

kmaxX

k=0

akz(q
2)k , (13)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.

In any given experiment, the finite range of Q2 implies
a maximal range for |z| that is less than unity. We denote

TABLE III. Maximum value of |z| for di↵erent Q2 ranges
and choices of t0. t

optimal
0 is defined in Eq. (14).

Q2
max [GeV2] t0 |z|max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal
0 (3.0GeV2) = �0.57GeV2 0.35

by toptimal
0 (Q2

max) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max  q2  0. Explicitly,

toptimal
0 (Q2) = tcut(1�

p
1 +Q2

max/tcut) . (14)

Table III displays |z|max for several choices of Q2
max and

t0.
The choice of t0 can be optimized for various applica-

tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2, and therefore take as default
choice,

t̄0 = toptimal
0 (1GeV2) ⇡ �0.28GeV2 , (15)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III
shows that the form factor expressed as FA(z) becomes
approximately linear. For example, taking |z|max = 0.23
implies that quadratic, cubic, and quartic terms enter at
the level of ⇠ 5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative

QCD [76], FA ⇠ Q�4, implies the series of four sum
rules [35]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(16)

We enforce the sum rules (16) on the coe�cients, en-
suring that the form factor falls smoothly to zero at
large Q2. Together with the Q2 = 0 constraint, this
leaves Na = kmax � 4 free parameters in Eq. (13). From
Eq. (16), it can be shown [35] that the coe�cients behave
as ak ⇠ k�4 at large k. We remark that the dipole ansatz
(9) implies the coe�cient scaling law |ak| ⇠ k at large k,
in conflict with perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [31] motivates the
bound of

|ak/a0|  5. (17)

As noted above, from Eq. (16), the coe�cients behave as
ak ⇠ k�4 at large k. We invoke a fallo↵ of the coe�cients
at higher order in k,

|ak/a0|  25/k , k > 5. (18)
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FIG. 5. Same as Fig. 1, but with Q2  1GeV2. These fits
correspond to the Na = 4 z expansion in Table V.
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FIG. 6. Di↵erential scattering cross sections for neutrino-
deuteron scattering at 1GeV neutrino energy, employing dif-
ferent nuclear models. The solid (red) curve is the free-
neutron result. The dashed (blue) curve is obtained from
the free-neutron result using the model from Ref. [65], as in
the original deuterium analyses. The top dot-dashed (black)
curve is extracted at E⌫ = 1GeV from Ref. [70]. The charged
lepton mass is neglected in this plot.

ANL : [ā1, �2LL] =

(
[2.29(14), 30.5] (without)

[2.38(14), 26.3] (with)
,

FNAL : [ā1, �2LL] =

(
[1.88(25), 8.2] (without)

[1.88(25), 8.2] (with)
.

(29)

The parameter ⌘ takes on values of�1.9, �1.0, and +0.01
for data from ANL1982, BNL1981, and FNAL1983 re-
spectively; the negative values indicate a pull to decrease
the predicted cross section to match the data. In each
case there is only modest improvement in the fit quality,
and small impact on the form factor shape. Acceptance
corrections within the quoted range have only minor im-
pact.

C. Deuteron corrections

The analysis to this point, like the original analyses,
used the deuteron correction model R(Q2) of Singh [65].
This model yields a suppression of the cross section for
Q2 < 0.16 GeV2.11 An example of a modern calculation

11
A follow-up analysis [80] considers e↵ects of meson exchange cur-

rents and alternate deuteron wave functions, with a total result

very similar to Ref. [65].

Bhattacharya, Hill, and Paz  PRD 84 (2011) 073006

free parameters

known functions

9

FIG. 2. The nucleon axial form factor FA(Q
2) determined us-

ing fits to neutrino-deuteron scattering data using the model-
independent z expansion from Ref. [65] (D2 Meyer et al.)
are shown as a blue band in the top panel. LQCD results
are shown for comparison from Ref. [30] (LQCD Bali et al.,
green), Ref. [34] (LQCD Park et al., red) and Ref. [35] (LQCD
Djukanovic et al., purple). Bands show combined statistical
and systematic uncertainties in all cases, see the main text
for more details. A dipole parameterization with MA = 1.0
GeV and a 1.4% uncertainty [107] is also shown for compari-
son (black). The lower panel shows the absolute value of the
di↵erence between D2 Meyer et al. and LQCD Bali et al.
results divided by their uncertainties added in quadrature,
denoted �FA/�; very similar results are obtained using the
other LQCD results.

factor results determined from experimental neutrino-
deuteron scattering data in Ref. [65]. Fits were performed
using results with Q

2
 1 GeV2 in Refs. [30, 34, 65] and

with Q
2
 0.7 GeV2 in Ref. [35] with the parameteri-

zation provided by the z expansion used to extrapolate
form factor results to larger Q

2. Clear agreement be-
tween di↵erent LQCD calculations can be seen. However,
the LQCD axial form factor results are 2-3� larger than
the results of Ref. [65] for Q

2 & 0.3 GeV2. The e↵ects of
this form factor tension on neutrino-nucleus cross section
predictions is studied using nuclear many-body calcula-
tions with the GFMC and SF methods in Sec. IV below.
The LQCD results of Refs. [30, 34] lead to nearly in-
distinguishable cross-section results that will be denoted
“LQCD Bali et al./Park et al.” or “LQCD” below and
used for comparison with the deuterium bubble-chamber
analysis of Ref. [65], denoted “D2 Meyer et al.” or “D2”
below.

IV. FLUX-AVERAGED CROSS SECTION
RESULTS

To evaluate both the nuclear model and nucleon axial
form factor dependence of neutrino-nucleus cross-section
predictions and their agreement with data, the GFMC
and spectral function methods are used to predict flux-
averaged cross sections that can be compared with data
from the T2K and MiniBooNE experiments. The Mini-
BooNE data for this comparison is a double di↵eren-
tial CCQE measurement where the main CC1⇡+ back-
ground has been subtracted using a tuned model [13],
and the T2K data is a double di↵erential CC0⇡ measure-
ment [114]. Muon neutrino flux-averaged cross sections
were calculated from

d�

dTµd cos ✓µ

=

Z
dE⌫�(E⌫)

d�(E⌫)

dTµd cos ✓µ

, (43)

where �(E⌫) are the normalized ⌫µ fluxes from Mini-
BooNE and T2K. Details on the neutrino fluxes for
each experiment can be found in the references above.

d�(E⌫)
dTµd cos ✓µ

are the corresponding inclusive cross sections

computed using the GFMC and SF methods as described
in Sec. II.

The fractional contribution of the axial form factor
to the one-body piece of the MiniBooNE flux-averaged
cross section is determined by including only pure axial
and axial-vector interference terms in the cross section
and shown in Fig. 3. These pure axial and axial-vector
interference terms account for half or more of the to-
tal one-body cross section for most Tµ and cos ✓µ, which
emphasizes the need for an accurate determination of the
nucleon axial form factor.

Figures 4 and 5 show the GFMC and SF predictions for
MiniBooNE and T2K, respectively, including the break-
down into one-body and two-body contributions. For
these comparisons we use the D2 Meyer et al. z expan-
sion for FA. Two features of the calculations should be
noted before discussing the results of these comparisons.
First, the uncertainty bands in the SF come only from the
axial form factor, while the GFMC error bands include
axial form factor uncertainties as well as a combination
of GFMC statistical errors and uncertainties associated
with the maximum-entropy inversion. Secondly, the axial
form factor enters into the SF only in the one-body term,
in contrast to the GFMC prediction where it enters into
both the one-body and one and two-body interference
term.

Below in Table I we quantify the di↵erences between
GFMC and SF predictions for both MiniBooNE and
T2K. The percent di↵erence in the di↵erential cross sec-
tions at each model’s peak are shown. The GFMC predic-
tions are up to 20% larger in backwards angle regions for
MiniBooNE and 13% larger for T2K in the same back-
ward region. The agreement between GFMC and SF
predictions is better at more forward angles but a 5-10%
di↵erence persists.
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form factor enters into the SF only in the one-body term,
in contrast to the GFMC prediction where it enters into
both the one-body and one and two-body interference
term.

Below in Table I we quantify the di↵erences between
GFMC and SF predictions for both MiniBooNE and
T2K. The percent di↵erence in the di↵erential cross sec-
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predictions is better at more forward angles but a 5-10%
di↵erence persists.

D2 Meyer et al: fits to neutrino-deuteron 
scattering data
LQCD result: general agreement between 
the different calculations

LQCD results are 2-3σ larger than D2 
Meyer ones for Q2 > 0.3 GeV2
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MiniBooNE 0.2 < cos ✓µ < 0.3 0.5 < cos ✓µ < 0.6 0.8 < cos ✓µ < 0.9
SF Di↵erence in d�peak (%) 16.3 17.1 9.3

GFMC Di↵erence in d�peak (%) 18.6 17.1 12.2

T2K 0.0 < cos ✓µ < 0.6 0.80 < cos ✓µ < 0.85 0.94 < cos ✓µ < 0.98
SF di↵erence in d�peak (%) 15.3 8.2 3.3

GFMC di↵erence in d�peak (%) 15.8 8.0 4.6

TABLE II. Percent increase in d�
dTµd cos ✓µ

at the quasielastic peak between predictions using LQCD Bali et al./Park et al.

z expansion versus D2 Meyer et al. z expansion nucleon axial form factor results.

FIG. 7. The ⌫µ flux-averaged di↵erential cross sections for MiniBooNE. The top panel shows Spectral Function predictions in
three bins of cos ✓µ with the D2 Meyer et al. z expansion FA in blue, as well as the LQCD Bali et al./Park et al. z expansion
FA in green. The dipole parameterization with MA = 1.0 GeV is shown without uncertainties as a black line. The lower
panel shows GFMC predictions using the same set of axial form factors, although in the GFMC case systematic uncertainties
including those arising from inversion of the Euclidean response functions are included in all results and the MA = 1.0 GeV
dipole form factor results are therefore shown as a black band.

dipole parameterization of FA as well as modified dipole
parameterizations of C

A

5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
15% variation in either C

A

5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.

Focusing now on FA, Figs. 7 and 8 compare flux-
averaged cross sections with di↵erent axial form factor
determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
Bali et al./Park et al. z expansion. One can see that

the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ

corresponding to backward angles and higher Q
2. This

is quantified in Table II, which shows the percentage dif-
ference in the peak values of d�

dTµd cos ✓µ
for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
ak are computed as described in Sec. III A. Figure 9
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FIG. 8. The ⌫µ flux-averaged di↵erential cross sections for T2K. Details are as in Fig. 7.

FIG. 9. Percent change in peak value of MiniBooNE flux-averaged cross section for 0.5 < cos ✓µ < 0.6 vs. percent change in
the z expansion parameters ak. Results are shown for predictions using SF (black) and GFMC (blue) methods, including the
slopes extracted from linear fits.

shows the percent di↵erences in flux-averaged cross sec-
tions evaluated at the quasielastic peak that have been
computed using both GFMC and SF methods after in-
dependently varying each ak by ±5, 10%. The slopes of
the resulting linear fits provide model-independent deter-
minations of the sensitivity of the peak cross section to
variations in FA. It is clear that the impact of varying

each ak decreases as k increases, as expected since the
contribution of each ak is suppressed by the k-th power
of z(Q2) < 1. In particular, a 10% change in a0 results
in a 10% change to the peak cross section, while a 10%
change in a1 results in a 1% change in the peak cross
section, and 10% variation of ak with k � 2 leads to
sub-percent changes in the peak cross section. It is note-
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panel shows GFMC predictions using the same set of axial form factors, although in the GFMC case systematic uncertainties
including those arising from inversion of the Euclidean response functions are included in all results and the MA = 1.0 GeV
dipole form factor results are therefore shown as a black band.

dipole parameterization of FA as well as modified dipole
parameterizations of C

A

5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
15% variation in either C

A

5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.

Focusing now on FA, Figs. 7 and 8 compare flux-
averaged cross sections with di↵erent axial form factor
determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
Bali et al./Park et al. z expansion. One can see that

the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ

corresponding to backward angles and higher Q
2. This

is quantified in Table II, which shows the percentage dif-
ference in the peak values of d�

dTµd cos ✓µ
for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
ak are computed as described in Sec. III A. Figure 9
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TABLE II. Percent increase in d�
dTµd cos ✓µ

at the quasielastic peak between predictions using LQCD Bali et al./Park et al.

z expansion versus D2 Meyer et al. z expansion nucleon axial form factor results.
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FA in green. The dipole parameterization with MA = 1.0 GeV is shown without uncertainties as a black line. The lower
panel shows GFMC predictions using the same set of axial form factors, although in the GFMC case systematic uncertainties
including those arising from inversion of the Euclidean response functions are included in all results and the MA = 1.0 GeV
dipole form factor results are therefore shown as a black band.
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averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.
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determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
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the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ
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2. This
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for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
ak are computed as described in Sec. III A. Figure 9
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MiniBooNE results including relativistic corrections
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FIG. 4. Flux averaged double di↵erential cross section for MiniBooNE. The nonrelativistic GFMC results (nr) are compared
to the results obtained in the ANB. They both include one- and two-body current contributions. The open circles are the cross
section to which the background reported in Ref. [32] is added.

applying the two-fragment model in the LAB frame in
the limit of large A, i.e. using the kinetic energy derived
from the relativistic momentum as discussed above.

IV. FLUX-AVERAGED CROSS SECTIONS

We compute the CC inclusive cross sections for di↵er-
ent kinematic setups, relevant for the MiniBooNE [22],
T2K [23], and MINER⌫A [24] experiments. Their in-
coming neutrino fluxes are characterized by average en-
ergies ranging from 700 MeV for T2K up to 6 GeV of the
medium-energy NuMI beam in MINER⌫A. Therefore,
the cross section receives contributions from the high mo-
mentum region of the phase space, where a proper treat-
ment of relativistic e↵ects become relevant. We account
for the latter by evaluating the GFMC electroweak re-
sponses in the ANB frame and boosting them back to
the LAB fram. As argued above, since the ANB frame
minimizes relativistic e↵ects, we find that applying the
two-fragment model brings about minimal di↵erences.

A. MiniBooNE

Our theoretical calculations for the flux averaged dou-
ble di↵erential cross section for the MiniBooNE kinemat-
ics are shown in Fig. 4. Both the nonrelativistic and
ANB results include one- and two-body current contri-
butions. The black squares correspond to the ‘CCQE-
like’ data reported in Ref. [32], whose extraction from
experimental measurements entails some model depen-
dence [41]. In particular, an irreducible ’non-CCQE’
background, mainly consisting of the production of a sin-
gle ⇡+ which is either absorbed or remains otherwise un-
detected [8, 42, 43], is estimated using the NUANCE
generator [44], and subtracted from the data. This
background is partly constrained by their own measure-
ment [45], but inconsistencies in the description of the
MiniBooNE ⇡+ production data and data from T2K [46]
and MINER⌫A [47] have been pointed out [41, 48–50].
Hence, to better gauge the uncertainties associated with
this procedure, it is best practice to add this background
back to the data points; we show the resulting distribu-
tion in Fig. 4 as empty circles. Finally, one should keep
in mind that the MiniBooNE collaboration reports an

A.Nikolakopoulos, A.Lovato, NR, PRC 109 (2024) 1, 014623
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Relevant Inputs from AFDMC
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The AFDMC method uses a spin-isospin basis given by the outer product of single-nucleon spinors

|Si = |s1i ⌦ |s2i · · ·⌦ |sAi
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FIG. 3. Point nucleon density of 4He as obtained with the
AFDMC using the AV8P and AV8P+UIX interactions com-
pared with the VMC results with the AV18 and AV18+UIX
Hamiltonians.

FIG. 4. Point nucleon density of 16O as obtained with the
AFDMC using the AV8P and AV8P+UIX interactions com-
pared with the CVMC results with the AV18 and AV18+UIX
Hamiltonians.

a cluster expansion scheme for the spin-isospin depen-
dent correlations present in the variational wave func-
tions, considering up to five-body cluster terms. Thanks
to this cluster expansion, there is no need to linearize
the spin-dependent correlations as in Eq.(13). Hence,
the CVMC variational wave functions are more accurate
than those employed as a starting point for AFDMC cal-
culations.

AV8P AV8P+UIX AV18 AV18+UIX Exp.

2.58(6) 2.61(9) 2.538(2) 2.745(2) 2.699(5)

TABLE V. Charge radii (in fm) of 16O obtained from
the AV8P and AV8P+UIX Hamiltonians with the AFDMC
method compared with the CVMC results for AV18 and
AV18+UIX Hamiltonian [71].

There is excellent agreement between AFDMC and
CVMC results, both for Hamiltonians including NN only
and for the full NN+3N case. However, it should be noted
that the repulsion brought about by the 3N potential ap-
pears to be stronger in AFDMC than in CVMC, resulting
in a more prominent depletion of the density at short dis-
tances. These di↵erences are likely attributed to the fact
that in the CVMC method, three-body correlations in
the variational wave function are treated at first-order in
perturbation theory. On the other hand, although the
same approximation applies to the AFDMC variational
state, in AFDMC, correlations induced by the 3N po-
tential are accounted for by the imaginary-time propaga-
tor—albeit the commutator term of UIX is approximated
as discussed in Eq.(20). This behavior is reflected in Ta-
bleV, which shows the charge radius of 16O for the same
Hamiltonians as discussed above. The 3N force, while
being overall attractive, increases the charge radius by
only about 0.03 fm, primarily because of the repulsive
V R

ijk
term. However, it should be noted that these dif-

ferences are much smaller than the uncertainties arising
from using an approximated imaginary-time propagator
to account for isospin-dependent spin-orbit terms and cu-
bic spin-isospin operators.

C. Momentum distributions

Momentum distributions reflect features of both long-
and short-distance nuclear dynamics and can provide use-
ful insight into nuclear reactions, including inclusive and
semi-inclusive electron and neutrino-nucleus scattering.
The probability of finding a nucleon with momentum k
and isospin projection ⌧ = p, n in the nuclear ground-
state is proportional to the density

n⌧ (k) =

Z
dr0

1
dr1 . . . drA 

⇤
0
(r0

1
, r2, . . . rA)

⇥ e�ik·(r1�r01)P⌧ (i) 0(r1, r2, . . . rA) , (33)

where  (r1, r2, . . . rA) = hR| 0i is a vector in spin-
isospin space.
Figure 5 shows the AFDMC proton momentum dis-

tribution of 4He as obtained using the AV8P and
AV8P+UIX interactions, compared with VMC calcula-
tions that use the AV18 and AV18+UIX combinations of
NN and 3N potentials. All the curves are close to each
other, both in the low- and high-momentum regions, and
they all exhibit a large tail extending to high momenta.
The presence of this tail is a consequence of the high-
resolution nature of the Argonne family of interactions,
which generate high-momentum components in the wave
function. Note that the similarity renormalization group
has recently proven to quantitatively reproduce the high-
resolution distributions using evolved operators and low-
resolution wave functions [80]. The 3N potential reduces
the momentum distribution at low momenta and further
increases its tail. Overall, this e↵ect appears to be more

9

FIG. 5. AFDMC proton momentum distribution of 4He for
the AV8P and AV8P+UIX interactions compared with VMC
results obtained with the AV18 and AV18+UIX Hamiltoni-
ans.

significant in the AFDMC than in the VMC, consistent
with what is observed in the single-nucleon spatial den-
sity displayed in Figure 3.

Similar considerations, including the presence of a
high-momentum tail, can be made for the proton mo-
mentum distribution of 16O, displayed in Figure 6. The
AFDMC calculations agree well with the CVMC results
from Ref.[71], largely independent of the input Hamilto-
nian. The accuracy of the CVMC method in computing
the momentum distribution is particularly high, given
the rapid convergence of the cluster expansions. This
behavior is consistent with the recent similarity renor-
malization group analysis from Ref. [80], where keeping
only two-body terms in the unitary transformation oper-
ator reproduces VMC results at the percent level.

FIG. 6. AFDMC proton momentum distribution of 16O
for the AV8P and AV8P+UIX interactions compared with
CVMC results obtained with the AV18 and AV18+UIX
Hamiltonians [71].

D. Euclidean density responses

In this work, we focus on the isoscalar density transi-
tion operator, defined as

⇢(q) =
AX

j=1

eiq·rj . (34)

Besides the obvious exception of the missing proton pro-
jection operator, the isoscalar density transition oper-
ator bears close similarities to the time component of
the one-body electromagnetic current operator, which
defines the electromagnetic longitudinal response of the
nucleus. The latter quantity is critical for determining
inclusive electron- and neutrino-nucleus scattering cross
sections [81], and to identify potential explicit quark and
gluons e↵ects in nuclear structure [82].
The corresponding response function is defined as

R(q,!) =
X

f

h| f |⇢(q)| 0i|2�(! � Ef + E0) . (35)

where q and ! denote the momentum and energy trans-
fer, respectively. In the above equation, |0i and |fi are
the initial and final nuclear states with energies E0 and
Ef , respectively. In order to avoid computing all tran-
sitions induced by the current operator — which is im-
practical except for very light nuclear systems [83, 84] —
similar to previous Green’s function Monte Carlo calcu-
lations, we infer properties of the response function from
its Laplace transform [81, 85]

E(q, ⌧) =

Z 1

0

d! e�!⌧R(q,!) . (36)

Leveraging the completeness of the final states of the
reaction, the Euclidean response can be expressed as a
ground-state expectation value:

E(q, ⌧) = h 0|⇢†(q)e�(H�E0)⌧⇢(q)| 0i, (37)

where H is the nuclear Hamiltonian.
Within the AFDMC, we evaluate the above expecta-

tion value employing the same imaginary-time propaga-
tion we use for finding the ground-state of the system.
Since the isoscalar density transition operator defined in
Eq. (34) does not encompass spin-isospin operators, we
can readily express the Euclidean response as

E(q, ⌧) =
AX

j,k=1

h 0|eiq·[rj(⌧=0)�rk(⌧)]| 0i . (38)

where rj(⌧) denotes the spatial coordinate of the j-th
nucleon at imaginary time ⌧ .
In this work, as commonly done in previous Green’s

function Monte Carlo applications [79, 86], we approxi-
mate the ground-state  0 with the variational wave func-
tion  V . While this procedure is accurate for 4He, its

This allows us to use QMC techniques to describe larger nuclei like 16O and 40Ca

AFDMC point nucleon density of 16O 
compared with the CVMC method

Nucleon momentum distribution of 16O 

Nucleon momentum distribution of 16O 
compared with the CVMC method
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Wigner Functions give the joint quasi-probability distribution of finding a nucleon with  k and r in the 
nucleus 

Relevant Inputs from AFDMC

Wigner distributions provide insight on the momentum structure of nuclear radii and spatial structure of 
the kinetic energy and what is the role of SRC.  

w(r, k) =
1

(2π)3 ∫ dxeik⋅x r +
x
2 ⟩⟨r −

x
2

=
1

(2π)3 ∫ dxe−iq⋅r k +
q
2 ⟩⟨k −

q
2
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Factorization Based Approaches
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!Energy transfer!e ⇠
q2

2m

d�

QE

RES

DIS

 Factorization of the hadronic final states: 
allows to tackle exclusive channels + higher 
energies relevant for DUNE

Meson Exchange
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Spectral function approach 

12

At large momentum transfer, the scattering reduces to the sum of individual terms

The incoherent contribution of the one-body response reads

J↵ =
X

i

ji↵ | f i ! |pi ⌦ | f iA�1

| 0i | f iA�1

|pi

NR, Frontiers in Phys. 8 (2020) 116 

FACTORIZATION SCHEME
At large momentum transfer, the scattering reduces to the sum of individual terms

Jµ !
X

i

jµi | A
f i ! |pi ⌦ | A�1

f i
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Ef = EA�1
f + e(p)
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The incoherent contribution of the one-body response reads

R↵� '
Z

d3k

(2⇡)3
dEPh(k, E)

X

i

hk|ji↵
†|k + qihk + q|ji� |ki�(! + E � e(k+ q))
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The Spectral Function is the imaginary part 
of the two point Green’s Function

I. Korover, et al Phys.Rev.C 107 (2023) 6, L061301 

Different many-body methods can be 
adopted to determine it

O. Benhar et al, Rev.Mod.Phys. 80 (2008) J.E. Sobczyk et al, PRC 106 (2022) 3

J.E. Sobczyk et al, PRC 109 (2024) 
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QMC Spectral function of light nuclei
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• The single-nucleon overlap has been computed within 
VMC ( center of mass motion fully accounted for)
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• Written in terms of two-body momentum distribution
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|fi ! |pp0ia ⌦ |fA�2i

The hadronic tensor for two-body current 
factorizes as

Rµ⌫
2b (q,!) /

Z
dEd3kd3k0P2b(k,k

0, E)

⇥d3pd3p0|hkk0|jµ2b|pp
0i|2

Production of real π in the final state

|fi ! |p⇡pi ⌦ |fA�1i

Rµ⌫
1b⇡(q,!) /

Z
dEd3kP1b(k, E)

⇥d3pd3k⇡|hk|jµ|pk⇡i|2

 Pion production elementary amplitudes 
currently derived within the extremely 
sophisticated Dynamic Couple Chanel 
approach; 

Spectral function approach 

��
��������

� ��� ��� ��� ��� ��� ���ԓᅼ�ԓဇ ր
ԓӺ ր(M

#f
b`

J
2o

)

ᆂ (:2o)

2tT
iQi .**

R#
k#ᅺ .**

Ӻր4djy J2o- ᅲր4jdXyੋ

NR, Frontiers in Phys. 8 (2020) 116 
S.X.Nakamura, et al PRD92(2015)  
T. Sato, et al PRC67(2003)  
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Axial Form Factors Uncertainty needs
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MiniBooNE 0.2 < cos ✓µ < 0.3 0.5 < cos ✓µ < 0.6 0.8 < cos ✓µ < 0.9
SF Di↵erence in d�peak (%) 16.3 17.1 9.3

GFMC Di↵erence in d�peak (%) 18.6 17.1 12.2

T2K 0.0 < cos ✓µ < 0.6 0.80 < cos ✓µ < 0.85 0.94 < cos ✓µ < 0.98
SF di↵erence in d�peak (%) 15.3 8.2 3.3

GFMC di↵erence in d�peak (%) 15.8 8.0 4.6

TABLE II. Percent increase in d�
dTµd cos ✓µ

at the quasielastic peak between predictions using LQCD Bali et al./Park et al.

z expansion versus D2 Meyer et al. z expansion nucleon axial form factor results.

FIG. 7. The ⌫µ flux-averaged di↵erential cross sections for MiniBooNE. The top panel shows Spectral Function predictions in
three bins of cos ✓µ with the D2 Meyer et al. z expansion FA in blue, as well as the LQCD Bali et al./Park et al. z expansion
FA in green. The dipole parameterization with MA = 1.0 GeV is shown without uncertainties as a black line. The lower
panel shows GFMC predictions using the same set of axial form factors, although in the GFMC case systematic uncertainties
including those arising from inversion of the Euclidean response functions are included in all results and the MA = 1.0 GeV
dipole form factor results are therefore shown as a black band.

dipole parameterization of FA as well as modified dipole
parameterizations of C

A

5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
15% variation in either C

A

5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.

Focusing now on FA, Figs. 7 and 8 compare flux-
averaged cross sections with di↵erent axial form factor
determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
Bali et al./Park et al. z expansion. One can see that

the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ

corresponding to backward angles and higher Q
2. This

is quantified in Table II, which shows the percentage dif-
ference in the peak values of d�

dTµd cos ✓µ
for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
ak are computed as described in Sec. III A. Figure 9
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TABLE I. Di↵erence in value of d�(E⌫)
dTµd cos ✓µ

at the quasielastic peak computed using GFMC and SF methods for MiniBooNE

and T2K flux-averaged double-di↵erential cross sections.

FIG. 4. Breakdown into one- and two-body current contributions of the ⌫µ flux-averaged di↵erential cross sections for Mini-
BooNE: 1b and 2b denotes one- and two-body current contributions while 12b denotes the total sum of these contributions.
The top panel shows Spectral Function predictions in three bins of cos ✓µ with the one-body contributions in orange, two-body
contributions in red, and the total in blue. The lower panel shows GFMC predictions with the same breakdown between one-
and two-body current contributions, although the two-body results include interference e↵ects only in the GFMC case. The
D2 Meyer et al. z expansion results for FA are used in both cases [65].

122] and pioneering LQCD calculations [118, 123], and
⇤R, which is a parameter that renormalizes the self en-
ergy of the �. These parameters have been chosen be-
cause they a↵ect the � piece of the two-body current,
which we have seen provides the largest contribution, as
well as because they are highly unconstrained.

contributions to neutrino-nucleus cross sections from C6 are sup-
pressed by lepton masses and therefore sub-dominant. A relation
between C6 and C5 analogous to Eq. (8) is also predicted by lead-
ing order chiral perturbation theory. See Refs. [85, 119] for more
details.

Each parameter was varied by ±5, 10% and the e↵ect
on the flux-averaged cross section at the peak of the two-
body contribution was computed. The e↵ect can be seen
in Fig. 6 where we have plotted the percent change in
the MiniBooNE cross section versus the percent change
in each parameter for 0.5 < cos ✓µ < 0.6, Tµ = 325 MeV.
This was fit to a line so that as in Sec. IIIA the ex-
tracted slope is an estimate of the derivative of the cross
section with respect to each parameter. The derivative
with respect to C

A

5 (0) is estimated to be 0.31, mean-
ing that achieving a given cross-section uncertainty re-
quires C

A

5 (0) to be known with . 3 times that uncer-
tainty. A similar though slightly smaller slope of 0.29 is
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MiniBooNE 0.2 < cos ✓µ < 0.3 0.5 < cos ✓µ < 0.6 0.8 < cos ✓µ < 0.9
GFMC/SF di↵erence in d�peak (%) 22.8 20.3 5.6

T2K 0.0 < cos ✓µ < 0.6 0.80 < cos ✓µ < 0.85 0.94 < cos ✓µ < 0.98
GFMC/SF di↵erence in d�peak (%) 13.4 7.3 10.0

TABLE I. Di↵erence in value of d�(E⌫)
dTµd cos ✓µ

at the quasielastic peak computed using GFMC and SF methods for MiniBooNE

and T2K flux-averaged double-di↵erential cross sections.

FIG. 4. Breakdown into one- and two-body current contributions of the ⌫µ flux-averaged di↵erential cross sections for Mini-
BooNE: 1b and 2b denotes one- and two-body current contributions while 12b denotes the total sum of these contributions.
The top panel shows Spectral Function predictions in three bins of cos ✓µ with the one-body contributions in orange, two-body
contributions in red, and the total in blue. The lower panel shows GFMC predictions with the same breakdown between one-
and two-body current contributions, although the two-body results include interference e↵ects only in the GFMC case. The
D2 Meyer et al. z expansion results for FA are used in both cases [65].

122] and pioneering LQCD calculations [118, 123], and
⇤R, which is a parameter that renormalizes the self en-
ergy of the �. These parameters have been chosen be-
cause they a↵ect the � piece of the two-body current,
which we have seen provides the largest contribution, as
well as because they are highly unconstrained.

contributions to neutrino-nucleus cross sections from C6 are sup-
pressed by lepton masses and therefore sub-dominant. A relation
between C6 and C5 analogous to Eq. (8) is also predicted by lead-
ing order chiral perturbation theory. See Refs. [85, 119] for more
details.

Each parameter was varied by ±5, 10% and the e↵ect
on the flux-averaged cross section at the peak of the two-
body contribution was computed. The e↵ect can be seen
in Fig. 6 where we have plotted the percent change in
the MiniBooNE cross section versus the percent change
in each parameter for 0.5 < cos ✓µ < 0.6, Tµ = 325 MeV.
This was fit to a line so that as in Sec. IIIA the ex-
tracted slope is an estimate of the derivative of the cross
section with respect to each parameter. The derivative
with respect to C

A

5 (0) is estimated to be 0.31, mean-
ing that achieving a given cross-section uncertainty re-
quires C

A

5 (0) to be known with . 3 times that uncer-
tainty. A similar though slightly smaller slope of 0.29 is

✴Axial form factor dependence:

✴Many-body method dependence:

D.Simons, N. Steinberg et al, 2210.02455
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FIG. 1. Feynman diagrams describing of the first two contri-
butions to the two-body currents associated with�-excitation
processes. Solid, thick green, and dashed lines correspond to
nucleons, deltas, pions, respectively. The wavy line represents
the vector boson.
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where k
0 and p

0 are the initial and final momentum of
the second nucleon, respectively, while k

0
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= p
0
� k

0 is
the momentum of the ⇡ exchanged in the two depicted
diagrams of Fig. 1, f
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with ⇤⇡N� = 1150 MeV and ⇤⇡ = 1300 MeV. The term
⌧± = (⌧x±i⌧y)/2 is the isospin raising/lowering operator.
In Eq. (16), j
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a
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b
denote the N ! � transition

vertices of diagram (a) and (b) of Fig. 1, respectively.
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where k is the momentum of the initial nucleon which ab-
sorbs the incoming momentum q̃ and p� = q̃+k, yielding
p
0
� = e(k) + !̃. We introduced q̃ = (!̃,q) to account for

the fact that the initial nucleons are o↵-shell. A similar
definition can be written down for j

µ

b
; more details are

reported in Ref. [23, 24]. For C
V

3 we adopted the model
of Ref. [87], yielding

C
V

3 =
2.13

(1 � q2/M2
V

)2
1

1 � q2/(4M
2
V

)
, (21)

with MV = 0.84 GeV. Following the discussion of
Ref. [86], we neglected the terms C

V

4 and C
V

5 which are
expected to be suppressed by O(k/mN ), while C

V

6 = 0 by
conservation of the vector current. However, it is worth
mentioning that including these terms in the current op-
erator would not pose any conceptual di�culty. To be
consistent, in the axial part we only retain the leading
contribution of Eq. (20), which is the term proportional
to C

A

5 defined as [88]

C
A

5 =
1.2

(1 � q2/MA�)2
⇥

1

1 � q2/(3MA�)2)
, (22)

with MA� = 1.05 GeV.
The Rarita-Schwinger propagator

G
↵�(p�) =

P
↵�(p�)

p
2
� � M

2
�

, (23)

is proportional to the spin 3/2 projection operator
P

↵�(p�). In order to account for the possible decay
of the � into a physical ⇡N , we replace M� ! M� �

i�(p�)/2 [89, 90] where the last term is the energy de-
pendent decay width given by

�(p�) =
(4f⇡N�)2

12⇡m2
⇡

|d|3
p

s
(mN + Ed)R(r2) . (24)

In the above equation, (4f⇡N�)2/(4⇡) = 0.38, s = p
2
�

is the invariant mass, d is the decay three-momentum in
the ⇡N center of mass frame, such that

|d|2 =
1

4s
[s � (mN + m⇡)2][s � (mN � m⇡)2] (25)

and Ed =
p

m
2
N

+ d2 is the associated energy. The ad-
ditional factor

R(r2) =

✓
⇤2

R

⇤2
R
� r2

◆
, (26)

depending on the ⇡N three-momentum r, with r2 =
(Ed �

p
m2

⇡
+ d2)2 � 4d2 and ⇤2

R
= 0.95 m

2
N

, is in-
troduced to improve the description of the experimental
phase-shift �33 [89]. The medium e↵ects on the � prop-
agator are accounted for by modifying the decay width
as

��(p�) ! ��(p�) � 2Im[U�(p�, ⇢ = ⇢0)], (27)

The largest contributions to two-body currents arise from 
resonant  transitions yielding pion productionN ! �

12

FIG. 5. Breakdown into one- and two-body current contributions of the ⌫µ flux-averaged di↵erential cross sections for T2K.
The color code is as in Fig. 4.

FIG. 6. Percent change in the value of the MiniBooNE flux-averaged cross section for 0.5 < cos ✓µ < 0.6 vs. percent change in
two parameters describing � resonance production and decay entering calculations of two-body current (MEC) e↵ects: CA

5 (Q2)
is the dominant N ! � transition form factor, and ⇤R renormalizes the self energy of the � as described in Sec. II B.

found for ⇤R. Current extractions of C5(0) rely on single
pion production data from deuterium bubble chamber
experiments [10–12], and due to limited statistics model
assumptions on the relations between N ! � transition
form factors are typically included to reduce the number

of fit parameters. Depending on the model assumptions
used, the resulting uncertainty on C5(0) is estimated
to be 10-15% in the analysis of Ref. [122], with similar
though slightly less conservative uncertainties estimated
in Refs. [85, 121]. Note that all of these analysis assume a

The normalization of the dominant  transition 
form factor needs be known to 3% precision to achieve 
1% cross-section precision for MiniBooNE kinematics 

N ! �

State-of-the-art determinations of this form factor from 
experimental data on pion electroproduction achieve 
10-15% precision (under some assumptions) 

Hernandez et al, PRD 81 (2010) 

Further constraints on  transition relevant for 
two-body currents and π production will be necessary to 
achieve few-percent cross-section precision 

N ! �

D.Simons, N. Steinberg et al, 2210.02455

mailto:nrocco@fnal.gov


Noemi Rocco, nrocco@fnal.gov17

We recently included interference effects between one- 
and two-body currents yielding single nucleon knock-out

Including the one- and two-body interference

Observe a small quenching in the longitudinal channel and 
an enhancement in the q.e. peak in the transverse → 
agreement with the GFMC 

N. Steinberg, NR, A. Lovato, arXiv: 2312.12545

6

To make contact with finite nuclei, we replace

θ(kF − k) → ñMF(k) (43)

and

θ(kF − h)δ(ω + e(h)− e(p)) →
∫

dEP̃MF(h, E)δ(ω̃ + e(h)− e(p)) . (44)

To keep the normalization consistent with the infinite
matter case, we defined ñMF(h) = k3F /(6π

2)nMF(h) and
P̃MF(h, E) = k3F /(6π

2)PMF(h, E). In order to select final
states in the reaction with only one-nucleon emission, we
consider just the mean-field component of the hole spec-
tral function. The corresponding momentum distribution
is obtained as

nMF(k) =

∫
dEPMF(k, E) . (45)

Note that, the normalization of the latter is less than
1, thereby quenching the interference between one- and
two-body currents. The final expression for latter that
we adopt in our numerical calculation reads

Rµν
12b =− V

∑

ηp,ηh,ηk

∫
d3h

(2π)3
d3k

(2π)3
dE

[
P̃MF(h, E)

× ñMF(k)δ(q− h+ p)θ(p− kF )⟨ηp|j1|ηh⟩

× ⟨ηpηk|j12|ηhηk⟩δ(ω̃ − e(p) + e(h))
]
. (46)

IV. RESULTS

We begin our analysis by comparing against inclusive
electron scattering data, for which the Rosenbluth tech-
nique can be applied to separate the longitudinal and
transverse contributions. The upper and lower panels
of Figure 2 display theoretical calculations of the lon-
gitudinal and transverse response functions of 12C, re-
spectively, at a momentum transfer of |q| = 570 MeV
compared against the world data analysis conducted by
Jourdan [75]. Within the extended factorization scheme,
final state interaction effects are included by convoluting
the impulse-approximation results with a folding func-
tion that both shifts and redistributes strength from the
peak to the tails [34]. Contributions from pure one- and
two-body currents, as well as their interference, are sepa-
rately shown to better identify their relative importance.
Consistent with the GFMC calculations in Ref. [25],

two-body currents in the longitudinal channel appear to
have a negligible effect. The pure two-body component is
nearly zero in the QE peak, while it brings about a mod-
est enhancement of the response in the dip region. On
the other hand, the interference contribution is small in
magnitude and negative, resulting in a minor depletion
of the total response. The scenario is markedly different

in the transverse channel, where two-body effects play a
crucial role. This is not entirely surprising, given that
the dominant contribution is the Delta current, which is
fully transverse. Both the pure two-body and interfer-
ence components contribute about the same additional
strength to the response beneath the QE peak, consti-
tuting almost 20% of the peak height. This enhancement
significantly improves the agreement between theoretical
calculations and experimental data. As highlighted in
several previous works — see for instance Refs. [41, 76]
— the pure two-body term becomes dominant in the dip
region. It is important to note that the missing strength
compared to experimental data has to be ascribed to
resonance-production mechanisms [66], which have not
been accounted for in the present work.

Thanks to our improved numerical implementation of
the two-body currents, we are now able to separately
compute the contribution of each isospin pair to the nu-
clear response. Figures 3 show the electromagnetic re-
sponses for |q| = 500 MeV, categorized into pp, pn, and

FIG. 2. Longitudinal (upper panel) and transverse (lower
panel) response functions from e-12C scattering at |q| = 570
MeV. Contributions are separated into pure one-body (red),
pure two-body (orange), interference between one and two-
body (purple), and total (blue).
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compared to experimental data has to be ascribed to
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compute the contribution of each isospin pair to the nu-
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FIG. 4. Inclusive electron cross sections on Carbon at several beam energies and scattering angles. Contributions are separated
into pure one-body (red), pure two-body (orange), interference between one and two-body (purple), and total (blue).

FIG. 5. Flux-averaged νµ differential cross sections on 12C for MiniBooNE. Three bins of cos θµ are shown with the one-body
contributions in red, pure two-body contributions in orange, one- and two-body interference in purple, and total in blue. The
width of the error band interpolates between the dipole axial form factor with MA = 1 GeV, and the LQCD form factor of
Ref. [53]. The open circles are the cross section to which the background reported in Ref. [79] is added

be seen as a way to interpolate between these two form
factor parameterizations.

While the choice of the LQCD form factor seems to sig-
nificantly improve the agreement with data, the model
dependent background subtraction method adopted by
the MiniBooNE collaboration as well as the lack of a pre-
diction including events with absorbed pions make quan-
titative comparisons difficult. We note that in our fac-
torization scheme the enhancement from the LQCD form
factor matches the enhancement seen in Green’s Function
Monte Carlo (GFMC) calculations of flux folded cross
section using the same LQCD form factor [54]. As these
are two completely different many body methods, only
linked by the same underlying nuclear Hamiltonian, the

sensitivity to the choice in axial form factor seems robust.

V. CONCLUSIONS

Providing accurate theoretical predictions, accompa-
nied by reliable uncertainty quantification, for neutrino-
nucleus scattering cross-sections in the energy regime rel-
evant to the neutrino-oscillation problem is highly non-
trivial. The primary challenges lie in combining a micro-
scopic, quantum-mechanical description of real-time nu-
clear dynamics with relativistic kinematics and currents.
In this regard, the extended factorization scheme, based
on realistic spectral functions obtained from Quantum

N. Steinberg, NR, A. Lovato, arXiv: 2312.12545
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torization scheme the enhancement from the LQCD form
factor matches the enhancement seen in Green’s Function
Monte Carlo (GFMC) calculations of flux folded cross
section using the same LQCD form factor [54]. As these
are two completely different many body methods, only
linked by the same underlying nuclear Hamiltonian, the

sensitivity to the choice in axial form factor seems robust.

V. CONCLUSIONS

Providing accurate theoretical predictions, accompa-
nied by reliable uncertainty quantification, for neutrino-
nucleus scattering cross-sections in the energy regime rel-
evant to the neutrino-oscillation problem is highly non-
trivial. The primary challenges lie in combining a micro-
scopic, quantum-mechanical description of real-time nu-
clear dynamics with relativistic kinematics and currents.
In this regard, the extended factorization scheme, based
on realistic spectral functions obtained from Quantum
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Interplay with BSM scenarios
• Interested in Weak Effective Field Theory (WEFT), valid below the electroweak scale, with the 

electroweak gauge bosons, the Higgs boson, and the top quark integrated out

!

"

ℓ!

$"

• CC: New left/right handed, (pseudo)scalar and tensor interactions

%

%

$!

$"

!"! "" "!! ̅""	! 	

• NC: New left and right handed interactions

WEFT: Effective Lagrangian defined at a low scale μ ~ 2 GeV EFT ladder

SMEFT

WEFT

• Neutrino experiments 
• Hadron Decays
• β-decays 

4/2/2024 Zahra Tabrizi, NTN fellow, Northwestern U. 7

• CC: New left/right handed, (pseudo)scalar and tensor interactions

• SM Interactions:

4/2/2024 Zahra Tabrizi, NTN fellow, Northwestern U. 15

SM-Interactions:

Hadronic Matrix Elements
Kopp, Rocco, ZT, arXiv: 2401.07902

Vector:

Axial:

4/2/2024 Zahra Tabrizi, NTN fellow, Northwestern U. 15

SM-Interactions:

Hadronic Matrix Elements
Kopp, Rocco, ZT, arXiv: 2401.07902

Vector:

Axial:

V :

A :

Z. Tabrizi, J. Kopp, NR, JHEP 08 (2024) 187
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Form factors - new interactions Z. Tabrizi, J. Kopp, NR,  arxiv: 2401.07902

• Scalar: conservation of the vector current (CVC):

• Pseudo-Scalar: partial conservation of the axial current (PCAC):

• Tensor:  LQCD and theoretical considerations
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NEW-Interactions:

4/2/2024

o We cannot neglect &'#	anymore!

o Large enhancements for several interactions;

Kopp, Rocco, ZT, arXiv: 2401.07902

• Scalar: conservation of the vector current (CVC)

• Partially-conserved axial current (PCAC)

• Scalar: conservation of the vector current (CVC):

• Pseudo-Scalar: partial conservation of the axial current (PCAC):

• Tensor:  LQCD and theoretical considerations

 

Zahra Tabrizi, NTN fellow, Northwestern U.

20

~350

NEW-Interactions:

4/2/2024

o We cannot neglect &'#	anymore!

o Large enhancements for several interactions;

Kopp, Rocco, ZT, arXiv: 2401.07902

• Tensor: LQCD and theoretical considerations

• Scalar: conservation of the vector current (CVC):

• Pseudo-Scalar: partial conservation of the axial current (PCAC):

• Tensor:  LQCD and theoretical considerations
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NEW-Interactions:
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o We cannot neglect &'#	anymore!

o Large enhancements for several interactions;
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small

We can not neglect  anymore.G̃S(Q2)

We analyze for the first time how the axial form factor 
uncertainty affects the study of new interactions beyond 
the SM and we find a sizable effect
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Interplay with BSM scenarios

Figure 2. Contributions to the CCQE differential cross sections for muon neutrinos scattering on
an oxygen target, as a function of the neutrino energy. Results for νe scattering are very similar.
The different colored curves correspond to operators with different Lorentz structures, with the SM
(LL) case shown in gray. For interactions depending on the axial form factor, we compare different
parameterizations of that form factor: the dipole from eq. (2.19) (dotted), the z-expansion fitted to
neutrino–deuteron scattering data (dashed), and the z-expansion fitted to lattice QCD results (solid).
For comparisons, we also show results for neutrino scattering on free nucleons (thinner dot-dashed
lines). The content of this plot is available in tabulated form from the Our main cross-section results
in tabulated form are available from GitHub [41].

– 16 –

• The axial form factor introduces significant 
systematic uncertainties, true for both SM 
and BSM interactions 

• Nuclear effects are crucial even at multi-GeV 
energies, this is particularly apparent for 
tensor interactions at energies ≳ 6GeV 

• The pseudoscalar and tensor interactions, 
exhibit cross sections notably enhanced 
compared to those of the Standard Model. 
{there is a considerable margin of 
uncertainty}

Z. Tabrizi, J. Kopp, NR,  arxiv: 2401.07902
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Using Bayesian ANN for electron-nucleus scattering

The inclusive electron-nucleus cross section can be written in terms of the longitudinal and 
transverse response function

Traditionally, the Rosenbluth separation is adopted to obtain  and RL(q, ω) RT(q, ω)

As  ranges between 180 to 0 degrees,  varies between 0 and 1. Within this approach,  is the 
slope while  is the intercept of the linear fit to data

θ ϵ RL
(q2/2Q2)RT

( d2σ
dE′ dΩ′ )

e

= ( dσ
dΩ′ )M

q4

q4
RL(q, ω) + (tan2 θ

2
−

1
2

q2

q2 ) RT(q, ω)

Photon polarization

Σ(q, ω, ϵ) = ϵ
q4

Q4 ( d2σ
dE′ dΩ′ 

)e/( dσ
dΩ′ )M

= ϵRL(q, ω) +
1
2

q2

Q2
RT(q, ω)

J. Sobczyk, NR, A. Lovato,  arxiv:2406.06292
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Using Bayesian ANN for electron-nucleus scattering

while (q2/2Q
2)RT is the intercept of the linear fit to data. Note

that Eq. (5) can only be applied if the Born approximation is
valid and if the data have already been corrected to account for
Coulomb distortions of the electron wave function.

In our calculations we assume that the Born approximations
holds, and following Aste (2008); Wallace and Tjon (2008),
we account for the Coulomb distortion e↵ects by using an ef-
fective momentum approximation. For target nuclei with a
large number of protons, the Coulomb field induces a distor-
tion of the electron wave function yielding a modification in
the (e, e0) cross section and inducing sizable e↵ects in the lon-
gitudinal and transverse separation of the electromagnetic re-
sponse. Since a highly relativistic particle is moving nearly
on a straight line inside a potential V(r), its momentum can be
rewritten as |k(0)

e↵ | = E
(0)+V(r) where we neglected the particle’s

mass. This expression is valid for the initial (final) electron mo-
mentum. For large momentum transfer, the knockout process
is nearly local, therefore one can consider a potential value V̄

which is obtained by taking the average over the nuclear den-
sity profile ⇢(r). If we approximate the nucleus with a homoge-
neously charged sphere with radius Rsp = (1.1A

1/3 + 0.86A
�1/3)

and charge number Z, the electric potential in the center of the
sphere is given by V(0) = �3↵. It follows that the potential
averaged over the volume of the sphere is V̄ = 3/2Z↵/Rsp. The
modulus of the e↵ective momentum transfer is obtained as

|qe↵ | =
p
|ke↵ |2 + |k0e↵ |2 � 2|ke↵ ||k0e↵ | cos ✓ . (7)

A focusing factor can be introduced to account for the attrac-
tive nucleus, focusing the electron wave function in the nuclear
region. However, if the same V̄ is used for both the e↵ective
momentum and the e↵ective focusing factors, a cancellation of
the focusing factors occurs. Therefore, in the e↵ective momen-
tum approximation, we simply replace q with qe↵ in the cross
section expression of Eq. (3). This replacement accounts for
both the momentum enhancement of the electron near the at-
tractive nucleus and the focusing of the electron wave function.

2.1. Neural network architecture

The longitudinal and transverse electromagnetic response
functions are outputs of the ANN architecture illustrated in
Fig. 1. The input of the network is a four-dimensional array
obtained by concatenating the energy and momentum trans-
fer with the number of nucleons and the number of protons:
(!, |q|, A,Z). The input energies are in GeV, ensuring that
their maximum value is of the order of one. To mitigate scale
di↵erences among the inputs, which could cause certain fea-
tures to dominate the learning process, we employ a standard
score (Kreyszig, 1979) to scale Z as

Zresc =
Z � Zavg

�Z
. (8)

In this equation, Zavg is the average value of Z, calculated as
the sum of all Zi=1,...,N values divided by N, the total number
of nuclei analyzed. The term �Z is defined as the di↵erence
between the maximum and minimum values of Z within the
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Figure 1: Schematic representation of the ANN architecture we employ to rep-
resent the electromagnetic longitudinal and transverse response functions.

range of nuclei considered. The same normalization procedure
is applied to the particle number A.

Inspired by the scaling properties of electromagnetic re-
sponses Day et al. (1987); Donnelly and Sick (1999); Benhar
(1999), we preprocess the input through a “Scaling” network,
whose single output is the variable y(!, |q|, A,Z). Note, how-
ever, that since we do not pretrain the scaling network, y does
not necessarily correspond to the scaling variable commonly
employed in the literature. Leveraging the concept of skip-
connections Srivastava et al. (2015), the output of the scaling
network is concatenated with the other inputs, forming the five-
dimensional array (y,!, q, A,Z), which is then input to a “Re-
sponse” network. The latter produces a 32-dimensional out-
put which is then taken as input to both the “Longitudinal” and
“Transverse” networks. These latter networks are completely
independent and each provides a single output corresponding
to the longitudinal and transverse responses, respectively. The
Scaling, Response, Transverse, and Longitudinal networks are
multilayer perceptrons (MLPs) with two hidden layers, each
comprised of 32 neurons and using the hyperbolic tangent ac-
tivation function. To ensure positive definiteness, an exponen-
tial function is employed to transform the raw outputs of both
the longitudinal and transverse MLPs and obtain R̂L and R̂T .
We collectively denote the weights and biases of the ANN with
W = w1, . . . ,wN — there are a total of 6787 parameters.

2.2. Bayesian training

The double di↵erential cross section corresponding to a given
nuclear species, incoming energy of the lepton, scattering an-
gle, and energy transfer, dubbed ŷi(W), is obtained plugging
R̂L and R̂T into Eq. (3) evaluated at the corresponding energy
transfer, while the e↵ective momentum transfer of Eq. (7) ac-
counts for Coulomb distortion e↵ects.

We train our ANN using the quasielastic electron nucleus
scattering archive of Benhar et al. (2006) on five selected light
and medium-mass nuclei, all with an equal number of protons
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• We built two completely independent 
nets proving the longitudinal and 
transverse responses.


•

We train our ANN using the quasielastic 
electron nucleus scattering archive of 
arXiv:nucl-ex/0603032

considering five different light and medium-
mass nuclei, symmetric: 4He, 6Li, 12C, 16O 
and 40Ca.

We used ANN architecture to obtain the longitudinal and transverse responses

We used Bayesian statistics to quantify the uncertainty of the ANN: treat the weights  as a 
probability distribution. The posterior distribution of  is sampled using the NumPyro No-U-Turn 
Sampler extension of HMC. We also implemented the standard HMC algorithm and validated results. 
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Figure 2: Results on test data for four symmetric nuclei. The uncertainty band encompasses the total spread of the ANN predictions. Experimental data taken
from Zghiche et al. (1994); Barreau et al. (1983); Anghinolfi et al. (1996); Meziani et al. (1984).

and neutrons: 4He, 6Li, 12C, 16O and 40Ca. Following Kowal
et al. (2023), we remove from our analysis the datasets on 12C
from Zeller (1973). Based on our preliminary analysis they
stay in tension with all other experiments. For 16O, we add to
our analysis the data from Anghinolfi et al. (1996), which are
not included in quasielastic electron nucleus scattering archive
of Benhar et al. (2006).

A critical aspect of this work consists in quantifying the un-
certainty associated with the ANN predictions. To this aim, we
leverage Bayesian statistics and treatW as probability distribu-
tions (Neal, 2012). Using Bayes’ theorem, the posterior prob-
ability of the parametersW given the measured cross sections
Y can be written as

P(W|Y) =
P(Y |W)P(W)

P(Y)
, (9)

where P(Y |W) is the likelihood and P(W) is the prior density
of the parameters (Utama et al., 2016). As in Neal (2012), we
assign a normal Gaussian prior for each neural network param-
eter

P(W) =
1

(2⇡)N/2 exp
0
BBBBB@

NX

i=1

�
w

2
i

2

1
CCCCCA . (10)

Note that such prior corresponds to l2 regularization with unit
weight.

Following standard practice, we assume a Gaussian distribu-
tion for the likelihood based on a loss function obtained from a
least-squares fit to the empirical data

P(Y |W) = exp
 
��

2

2

!
, (11)

where

�2 =

NX

i=1

⇥
yi � ŷi(W))

⇤2

�2
i

. (12)

In the above equation, yi is the i-th experimental value of the
cross section and the sum runs over the kinematics and nuclei
included in the training dataset. We augment the experimen-
tal errors �i listed in Benhar et al. (2006) including an addi-
tional term proportional to the experimental cross section value:
�i ! �i + 0.05yi. The primary reason behind this choice is that
experimental errors are in general small and most experiments
report an additional few-percent systematic uncertainty.

All of our numerical simulations are performed using the
JAX Python library Bradbury et al. (2018). The posterior distri-
bution is sampled leveraging the NumPyro No-U-Turn Sampler
extension of Hamiltonian Monte Carlo (HMC) (Phan et al.,
2019; Bingham et al., 2019). Additionally, we implemented
the standard HMC algorithm as outlined in Ref. Ho↵man and
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Figure 3: Electromagnetic longitudinal (upper panel) and transverse (lower
panel) responses of 4He at q = 400 MeV. The ANN results are compared
with theoretical calculations (Lovato et al., 2015) and the Rosenbluth separation
analysis of Carlson et al. (2002).

Gelman (2011) and found results that are consistent with those
obtained using the NumPyro package.

3. Results

In the first part of the analysis, we split experimental data
into training and test datasets, containing 80%, and 20% of the
measured cross sections, respectively. Since the experimental
errors at each kinematic setup for a given nucleus are likely to
be correlated, we never split data coming from a single experi-
ment. However, we have no way to account for correlated errors
among di↵erent kinematics.

In Fig. 2, we present the ANN predictions for four di↵erent
nuclei and kinematics belonging to the test datasets. Despite
never encountering these kinematics before, the ANN is capa-
ble of capturing all reaction mechanisms, including elastic and
quasi-elastic scattering, as well as the deep inelastic scattering
region. The spread of the predictions is consistent with the size
of experimental errors. For 4He and 12C, where a large amount

of data is available for training, the results exhibit very good
agreement with experimental data, with notably smaller error
bars. Conversely, the uncertainty band is notably wider for 16O
and 40Ca, primarily due to the scarcity of datasets for these two
nuclei. In the case of 16O, where experimental data is limited,
the ANN greatly benefits from information gathered on di↵er-
ent nuclei with similar kinematics. We note that this capability
arises from training the ANN simultaneously on various nu-
clei. In the Supplemental Material, we provide extensive ANN
predictions for the entire test dataset. The excellent agreement
between ANN predictions and experimental data corroborates
the accuracy of the chosen architecture as well as the reliability
of the Bayesian training.

As a second step of our analysis, we train the ANN on all the
available experimental data to predict the responses of 4He, 6Li,
12C, 16O and 40Ca and compare them with Rosenbluth separa-
tion analysis found in the literature.

The ANN response functions of 4He at q = 400 MeV/c,
shown in Fig.3, are in remarkably good agreement with previ-
ous experimental extractions reported in Carlson et al. (2002).
At low energy transfers, the uncertainties are large due to low-
lying nuclear states. The fine details of this part of the spec-
trum have not been accurately learned by the ANN owing to in-
su�cient data and the fact that low-energy transitions strongly
depend on the specific nucleus. We note that some relatively
minor di↵erences with Rosenbluth-separation analyses are vis-
ible in the tails of the quasi-elastic peak in both the longitudinal
and transverse channels. We explicitly checked that ANN re-
sponses agree well with experimental data also for q = 300,
500, and 600 MeV/c — see the Supplemental Material for the
corresponding figures. In general, the ANN yields smaller un-
certainties for RT than for RL. Consistent with what observed at
q = 400 MeV/c, the responses below ! = 50 MeV often tend
to be unstable, leading to large uncertainties.

In Figure 3, the ANN longitudinal and transverse response
functions are also compared with ab initio GFMC and LIT-CC
calculations. The GFMC uses the highly realistic phenomeno-
logical Argonne v18 (Wiringa et al., 1995) + Illinois 7 (Pieper,
2008) (AV18+IL7) Hamiltonian, which reproduces the spec-
trum of A  12 nuclei with percent-level accuracy. The electro-
magnetic transition operator, largely consistent with the Hamil-
tonian, comprises one- and two-body terms and are derived
within the so-called standard nuclear physics approach (Shen
et al., 2012). On the other hand, the LIT-CC calculations are
based on a chiral e↵ective field theory Hamiltonian that in-
cludes terms up to next-to-next-to-leading order, without ex-
plicit � degrees of freedom, referred to as NNLOsat (Ekström
et al., 2015). This interaction Hamiltonian includes two- and
three-body terms optimized to simultaneously reproduce low-
energy nucleon-nucleon scattering and selected nuclear struc-
ture data. Only one-body current contributions are retained in
the transition operator.

In the longitudinal channel, we observe remarkable agree-
ment between the two ab initio methods, the ANN response
functions, and the Rosenbluth separation analysis. However, in
the transverse channel, the GFMC calculations exhibit an ex-
cess strength compared to the LIT-CC calculations, driven by
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Figure 3: Electromagnetic longitudinal (upper panel) and transverse (lower
panel) responses of 4He at q = 400 MeV. The ANN results are compared
with theoretical calculations (Lovato et al., 2015) and the Rosenbluth separation
analysis of Carlson et al. (2002).

Gelman (2011) and found results that are consistent with those
obtained using the NumPyro package.

3. Results

In the first part of the analysis, we split experimental data
into training and test datasets, containing 80%, and 20% of the
measured cross sections, respectively. Since the experimental
errors at each kinematic setup for a given nucleus are likely to
be correlated, we never split data coming from a single experi-
ment. However, we have no way to account for correlated errors
among di↵erent kinematics.

In Fig. 2, we present the ANN predictions for four di↵erent
nuclei and kinematics belonging to the test datasets. Despite
never encountering these kinematics before, the ANN is capa-
ble of capturing all reaction mechanisms, including elastic and
quasi-elastic scattering, as well as the deep inelastic scattering
region. The spread of the predictions is consistent with the size
of experimental errors. For 4He and 12C, where a large amount

of data is available for training, the results exhibit very good
agreement with experimental data, with notably smaller error
bars. Conversely, the uncertainty band is notably wider for 16O
and 40Ca, primarily due to the scarcity of datasets for these two
nuclei. In the case of 16O, where experimental data is limited,
the ANN greatly benefits from information gathered on di↵er-
ent nuclei with similar kinematics. We note that this capability
arises from training the ANN simultaneously on various nu-
clei. In the Supplemental Material, we provide extensive ANN
predictions for the entire test dataset. The excellent agreement
between ANN predictions and experimental data corroborates
the accuracy of the chosen architecture as well as the reliability
of the Bayesian training.

As a second step of our analysis, we train the ANN on all the
available experimental data to predict the responses of 4He, 6Li,
12C, 16O and 40Ca and compare them with Rosenbluth separa-
tion analysis found in the literature.

The ANN response functions of 4He at q = 400 MeV/c,
shown in Fig.3, are in remarkably good agreement with previ-
ous experimental extractions reported in Carlson et al. (2002).
At low energy transfers, the uncertainties are large due to low-
lying nuclear states. The fine details of this part of the spec-
trum have not been accurately learned by the ANN owing to in-
su�cient data and the fact that low-energy transitions strongly
depend on the specific nucleus. We note that some relatively
minor di↵erences with Rosenbluth-separation analyses are vis-
ible in the tails of the quasi-elastic peak in both the longitudinal
and transverse channels. We explicitly checked that ANN re-
sponses agree well with experimental data also for q = 300,
500, and 600 MeV/c — see the Supplemental Material for the
corresponding figures. In general, the ANN yields smaller un-
certainties for RT than for RL. Consistent with what observed at
q = 400 MeV/c, the responses below ! = 50 MeV often tend
to be unstable, leading to large uncertainties.

In Figure 3, the ANN longitudinal and transverse response
functions are also compared with ab initio GFMC and LIT-CC
calculations. The GFMC uses the highly realistic phenomeno-
logical Argonne v18 (Wiringa et al., 1995) + Illinois 7 (Pieper,
2008) (AV18+IL7) Hamiltonian, which reproduces the spec-
trum of A  12 nuclei with percent-level accuracy. The electro-
magnetic transition operator, largely consistent with the Hamil-
tonian, comprises one- and two-body terms and are derived
within the so-called standard nuclear physics approach (Shen
et al., 2012). On the other hand, the LIT-CC calculations are
based on a chiral e↵ective field theory Hamiltonian that in-
cludes terms up to next-to-next-to-leading order, without ex-
plicit � degrees of freedom, referred to as NNLOsat (Ekström
et al., 2015). This interaction Hamiltonian includes two- and
three-body terms optimized to simultaneously reproduce low-
energy nucleon-nucleon scattering and selected nuclear struc-
ture data. Only one-body current contributions are retained in
the transition operator.

In the longitudinal channel, we observe remarkable agree-
ment between the two ab initio methods, the ANN response
functions, and the Rosenbluth separation analysis. However, in
the transverse channel, the GFMC calculations exhibit an ex-
cess strength compared to the LIT-CC calculations, driven by
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Figure 4: Electromagnetic responses on 12C for q = 380 MeV/c. The ANN
extractions are compared with theoretical calculations (Lovato et al., 2016) and
the Rosenbluth-separations analysis of Jourdan (1996)

two-body current contributions. In particular, it has been ob-
served that this enhancement is primarily due to the interfer-
ence between one- and two-body terms leading to final states
with only one nucleon in the continuum (Fabrocini, 1997; Ben-
har et al., 2015; Franco-Munoz et al., 2023; Lovato et al., 2023).
The discrepancies between the GFMC results and the ANN pre-
dictions in this channel might be attributed to relativistic correc-
tions in the currents, which emerge at higher orders in the ex-
pansion compared to the longitudinal case (Rocco et al., 2016,
2018), and have not been accounted for in the present work.
It is also reassuring that the GFMC underestimates data on the
right side of the quasi-elastic peak, as this allows for the ac-
commodation of strength that is very likely to leak from the �
region.

Our results for 12C at q = 380 MeV/c in Figure 4 closely
match the Rosenbluth separation performed in Jourdan (1996)
for the RL response. However, they predict more strength in
the transverse channel; a similar trend is observed at q = 300
MeV/c, as shown in the Supplemental Material. Due to the
fact that some of the inclusive cross-section kinematics include

elastic and inelastic transitions to low-lying excited states, the
low-energy part of the spectrum exhibits larger uncertainties.
The GFMC calculations of Ref. Lovato et al. (2016) show good
agreement with the ANN responses, although some di↵erences
are visible in the low ! region in the longitudinal channel. The
GFMC and Rosenbluth separation match perfectly in that re-
gion. It is important to note that the contributions from elastic
and low-lying inelastic transitions are explicitly removed from
the GFMC responses and the Rosenbluth analysis, while they
are present in the ANN curves. In the transverse channel, the
ANN transverse response appears to be above both the Rosen-
bluth analysis and GFMC calculations at energies larger than
the quasielastic peak. As discussed earlier for the transverse
response of 4He, this behavior is reassuring as it leaves room
for pion production in the � peak, which is not included in the
GFMC and will produce strength in that region.

Our ANN framework allows us to extract, for the first time,
the longitudinal and transverse response functions of 16O, as
shown in Figure 5. Owing to the scarcity of inclusive cross sec-
tions at di↵erent scattering angles, to the best of our knowledge,
no Rosenbluth separation has been performed to extract the lon-
gitudinal and transverse responses of 16O. Since the ANN has
been trained with limited 16O data, the Bayesian training auto-
matically yields sizable uncertainties, much larger than for 4He
and 12C, particularly at energy transfer up to the quasi-elastic
peak region. For this nucleus, LIT-CC calculations will soon
be carried out, whereas the computational cost renders this nu-
cleus out of reach for GFMC. On the other hand, the auxiliary-
field di↵usion Monte Carlo method that has recently been ap-
plied to compute the Euclidean isoscalar density response of
A = 16 (Gnech et al., 2024) will soon be extended to accom-
modate electromagnetic longitudinal and transverse transition
operators.

The ANN results for 40Ca, shown in Fig. 6, di↵er from the
experimental data obtained from Rosenbluth separation, espe-
cially for RT . It is interesting to note that the ANN uncertainties
increase significantly in the high energy transfer region. This

Figure 5: Electromagnetic responses on 16O for q = 400 MeV/c.
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the Rosenbluth-separations analysis of Jourdan (1996)
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The discrepancies between the GFMC results and the ANN pre-
dictions in this channel might be attributed to relativistic correc-
tions in the currents, which emerge at higher orders in the ex-
pansion compared to the longitudinal case (Rocco et al., 2016,
2018), and have not been accounted for in the present work.
It is also reassuring that the GFMC underestimates data on the
right side of the quasi-elastic peak, as this allows for the ac-
commodation of strength that is very likely to leak from the �
region.

Our results for 12C at q = 380 MeV/c in Figure 4 closely
match the Rosenbluth separation performed in Jourdan (1996)
for the RL response. However, they predict more strength in
the transverse channel; a similar trend is observed at q = 300
MeV/c, as shown in the Supplemental Material. Due to the
fact that some of the inclusive cross-section kinematics include

elastic and inelastic transitions to low-lying excited states, the
low-energy part of the spectrum exhibits larger uncertainties.
The GFMC calculations of Ref. Lovato et al. (2016) show good
agreement with the ANN responses, although some di↵erences
are visible in the low ! region in the longitudinal channel. The
GFMC and Rosenbluth separation match perfectly in that re-
gion. It is important to note that the contributions from elastic
and low-lying inelastic transitions are explicitly removed from
the GFMC responses and the Rosenbluth analysis, while they
are present in the ANN curves. In the transverse channel, the
ANN transverse response appears to be above both the Rosen-
bluth analysis and GFMC calculations at energies larger than
the quasielastic peak. As discussed earlier for the transverse
response of 4He, this behavior is reassuring as it leaves room
for pion production in the � peak, which is not included in the
GFMC and will produce strength in that region.

Our ANN framework allows us to extract, for the first time,
the longitudinal and transverse response functions of 16O, as
shown in Figure 5. Owing to the scarcity of inclusive cross sec-
tions at di↵erent scattering angles, to the best of our knowledge,
no Rosenbluth separation has been performed to extract the lon-
gitudinal and transverse responses of 16O. Since the ANN has
been trained with limited 16O data, the Bayesian training auto-
matically yields sizable uncertainties, much larger than for 4He
and 12C, particularly at energy transfer up to the quasi-elastic
peak region. For this nucleus, LIT-CC calculations will soon
be carried out, whereas the computational cost renders this nu-
cleus out of reach for GFMC. On the other hand, the auxiliary-
field di↵usion Monte Carlo method that has recently been ap-
plied to compute the Euclidean isoscalar density response of
A = 16 (Gnech et al., 2024) will soon be extended to accom-
modate electromagnetic longitudinal and transverse transition
operators.

The ANN results for 40Ca, shown in Fig. 6, di↵er from the
experimental data obtained from Rosenbluth separation, espe-
cially for RT . It is interesting to note that the ANN uncertainties
increase significantly in the high energy transfer region. This

Figure 5: Electromagnetic responses on 16O for q = 400 MeV/c.
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Figure 4: Electromagnetic responses on 12C for q = 380 MeV/c. The ANN
extractions are compared with theoretical calculations (Lovato et al., 2016) and
the Rosenbluth-separations analysis of Jourdan (1996)

two-body current contributions. In particular, it has been ob-
served that this enhancement is primarily due to the interfer-
ence between one- and two-body terms leading to final states
with only one nucleon in the continuum (Fabrocini, 1997; Ben-
har et al., 2015; Franco-Munoz et al., 2023; Lovato et al., 2023).
The discrepancies between the GFMC results and the ANN pre-
dictions in this channel might be attributed to relativistic correc-
tions in the currents, which emerge at higher orders in the ex-
pansion compared to the longitudinal case (Rocco et al., 2016,
2018), and have not been accounted for in the present work.
It is also reassuring that the GFMC underestimates data on the
right side of the quasi-elastic peak, as this allows for the ac-
commodation of strength that is very likely to leak from the �
region.

Our results for 12C at q = 380 MeV/c in Figure 4 closely
match the Rosenbluth separation performed in Jourdan (1996)
for the RL response. However, they predict more strength in
the transverse channel; a similar trend is observed at q = 300
MeV/c, as shown in the Supplemental Material. Due to the
fact that some of the inclusive cross-section kinematics include

elastic and inelastic transitions to low-lying excited states, the
low-energy part of the spectrum exhibits larger uncertainties.
The GFMC calculations of Ref. Lovato et al. (2016) show good
agreement with the ANN responses, although some di↵erences
are visible in the low ! region in the longitudinal channel. The
GFMC and Rosenbluth separation match perfectly in that re-
gion. It is important to note that the contributions from elastic
and low-lying inelastic transitions are explicitly removed from
the GFMC responses and the Rosenbluth analysis, while they
are present in the ANN curves. In the transverse channel, the
ANN transverse response appears to be above both the Rosen-
bluth analysis and GFMC calculations at energies larger than
the quasielastic peak. As discussed earlier for the transverse
response of 4He, this behavior is reassuring as it leaves room
for pion production in the � peak, which is not included in the
GFMC and will produce strength in that region.

Our ANN framework allows us to extract, for the first time,
the longitudinal and transverse response functions of 16O, as
shown in Figure 5. Owing to the scarcity of inclusive cross sec-
tions at di↵erent scattering angles, to the best of our knowledge,
no Rosenbluth separation has been performed to extract the lon-
gitudinal and transverse responses of 16O. Since the ANN has
been trained with limited 16O data, the Bayesian training auto-
matically yields sizable uncertainties, much larger than for 4He
and 12C, particularly at energy transfer up to the quasi-elastic
peak region. For this nucleus, LIT-CC calculations will soon
be carried out, whereas the computational cost renders this nu-
cleus out of reach for GFMC. On the other hand, the auxiliary-
field di↵usion Monte Carlo method that has recently been ap-
plied to compute the Euclidean isoscalar density response of
A = 16 (Gnech et al., 2024) will soon be extended to accom-
modate electromagnetic longitudinal and transverse transition
operators.

The ANN results for 40Ca, shown in Fig. 6, di↵er from the
experimental data obtained from Rosenbluth separation, espe-
cially for RT . It is interesting to note that the ANN uncertainties
increase significantly in the high energy transfer region. This

Figure 5: Electromagnetic responses on 16O for q = 400 MeV/c.
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behavior, in contrast to what is observed in lighter nuclei, re-
flects the fact that there is little high energy-momentum trans-
fer data available for 40Ca. Consequently, the ANN performs
an extrapolation based on data available for other nuclei at high
energies. The Bayesian training is fundamental in this regard,
as it allows us to estimate the uncertainties associated with
this extrapolation. The LIT-CC calculations for the longitu-
dinal response are very close with both Rosenbluth-separation
data and ANN predictions. In the transverse channel, it ap-
pears that including only the one-body current operator su�ces
to reproduce the Rosenbluth-separation data adequately, which
is in contrast with what has been observed for 4He (and with
the GFMC findings). However, it is noteworthy that the ANN
predictions exhibit a 10 � 15% enhancement compared to the
experimental points. In this regard, we note that principally
two experiments (Williamson et al., 1997; Meziani et al., 1984)
measured electron scattering on 40Ca and performed the Rosen-
bluth separation (there is one additional dataset Whitney et al.
(1974)). As discussed in detail in the Supplemental Material,
the results reported by these two analysis disagree substantially.

Figure 6: Electromagnetic responses on 40Ca for q = 380 MeV/c. Our predic-
tion compared with theoretical calculations Sobczyk et al. (2024). Data taken
from Jourdan (1996).

4. Conclusions

In this work, we performed the first extraction of electromag-
netic longitudinal and transverse response functions using ma-
chine learning techniques for symmetric nuclei across a broad
range of masses, A = 4 � 40. A critical di↵erence between our
work and earlier studies (Al Hammal et al., 2023; Kowal et al.,
2023), which employed ANNs to directly model the (e, e0) in-
clusive scattering cross-sections, is that our ANN architecture
outputs the longitudinal and transverse responses. These re-
sponses are then combined with the appropriate kinematic fac-
tors, which do not have to be learned, to obtain the inclusive
(e, e0) cross section for a given incoming energy, scattering an-
gle, and energy transfer. This procedure enables us to provide
accurate predictions for (e, e0) inclusive cross sections on dif-
ferent nuclear targets, as well as to extract the longitudinal and
transverse electromagnetic responses for various kinematics.

Our approach leverages Bayesian statistics to rigorously
quantify the uncertainties in the ANN predictions. Specifically,
we employ Hamiltonian Monte Carlo techniques to sample the
posterior distribution of the ANN parameters, yielding a set of
ANNs that are consistent with (e, e0) inclusive cross sections
and fully account for the associated experimental errors. This
Bayesian protocol also addresses epistemic uncertainties, auto-
matically resulting in larger errors when extrapolating.

We obtained highly accurate results for 4He and 12C inclu-
sive cross sections, benefiting from the availability of extensive
training datasets. The algorithm successfully reproduces the
test datasets for these cross sections across a wide range of en-
ergies, encompassing various reaction mechanisms and degrees
of freedom. The ANN also reproduces well the test datasets for
the other nuclei we considered: 6Li, 16O, and 40Ca. However,
the theoretical uncertainties are larger due to the fact that there
are fewer experimental data available for these nuclei compared
to 4He and 12C.

As a second step, we utilized the entire (e, e0) inclusive cross
section dataset to perform the first ANN-based extraction of
longitudinal and transverse electromagnetic response functions.
The ANNs are, in general, in good agreement with previous
Rosenbluth separation analyses found in the literature (Jour-
dan, 1996; Carlson et al., 2002). The availability of longitu-
dinal and transverse responses enables us to make a direct com-
parison with the GFMC and LIT-CC ab-initio quantum many-
body methods. We find that both the GFMC and LIT-CC re-
produce the ANN responses well, in both the longitudinal and
transverse channels. Notably, our ANN analysis of 40Ca sug-
gests a potential underestimation of the RT strength in previ-
ous Rosenbluth-separation extractions, confirming a tension be-
tween the Saclay (Meziani et al., 1984) and Bates (Williamson
et al., 1997) data for 40Ca, and will likely resolve the tension
with LIT-CC calculations. New experimental measurements
would be extremely valuable to resolve this tension.

The approach presented in this work allows us to predict elec-
tromagnetic responses in scenarios where traditional methods
fail due to the lack of data. A chief example is 16O, where no
traditional Rosenbluth separation has been performed yet. The
availability of additional inclusive electron-scattering data o↵
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✴Neutrino oscillation experiments are entering a new precision era

Form factors: one- and two-body currents, resonance/π production

Error of factorizing the hard interaction vertex / using a non relativistic approach

✴Uncertainty associated with the theory prediction of the hard interaction vertex needs to be 
assessed. Initial work has been carried out in this direction studying the dependence on:

✴Combine state-of-the art neutrino-nucleus calculations with BSM theories is gaining momentum; UQ 
is very interesting (and challenging) in this case as well

✴To match these precision goals accurate predictions of neutrino cross sections are crucial

Ab initio methods: almost exact results but limited in energy, fully inclusive

Approaches based on factorization schemes are being further developed 
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We recently included interference effects between one- 
and two-body currents yielding single nucleon knock-out

Including the one- and two-body interference

Observe a small quenching in the longitudinal channel and 
an enhancement in the q.e. peak in the transverse → 
agreement with the GFMC 

N. Steinberg, NR, A. Lovato, arXiv: 2312.12545
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To make contact with finite nuclei, we replace

θ(kF − k) → ñMF(k) (43)

and

θ(kF − h)δ(ω + e(h)− e(p)) →
∫

dEP̃MF(h, E)δ(ω̃ + e(h)− e(p)) . (44)

To keep the normalization consistent with the infinite
matter case, we defined ñMF(h) = k3F /(6π

2)nMF(h) and
P̃MF(h, E) = k3F /(6π

2)PMF(h, E). In order to select final
states in the reaction with only one-nucleon emission, we
consider just the mean-field component of the hole spec-
tral function. The corresponding momentum distribution
is obtained as

nMF(k) =

∫
dEPMF(k, E) . (45)

Note that, the normalization of the latter is less than
1, thereby quenching the interference between one- and
two-body currents. The final expression for latter that
we adopt in our numerical calculation reads

Rµν
12b =− V

∑

ηp,ηh,ηk

∫
d3h

(2π)3
d3k

(2π)3
dE

[
P̃MF(h, E)

× ñMF(k)δ(q− h+ p)θ(p− kF )⟨ηp|j1|ηh⟩

× ⟨ηpηk|j12|ηhηk⟩δ(ω̃ − e(p) + e(h))
]
. (46)

IV. RESULTS

We begin our analysis by comparing against inclusive
electron scattering data, for which the Rosenbluth tech-
nique can be applied to separate the longitudinal and
transverse contributions. The upper and lower panels
of Figure 2 display theoretical calculations of the lon-
gitudinal and transverse response functions of 12C, re-
spectively, at a momentum transfer of |q| = 570 MeV
compared against the world data analysis conducted by
Jourdan [75]. Within the extended factorization scheme,
final state interaction effects are included by convoluting
the impulse-approximation results with a folding func-
tion that both shifts and redistributes strength from the
peak to the tails [34]. Contributions from pure one- and
two-body currents, as well as their interference, are sepa-
rately shown to better identify their relative importance.
Consistent with the GFMC calculations in Ref. [25],

two-body currents in the longitudinal channel appear to
have a negligible effect. The pure two-body component is
nearly zero in the QE peak, while it brings about a mod-
est enhancement of the response in the dip region. On
the other hand, the interference contribution is small in
magnitude and negative, resulting in a minor depletion
of the total response. The scenario is markedly different

in the transverse channel, where two-body effects play a
crucial role. This is not entirely surprising, given that
the dominant contribution is the Delta current, which is
fully transverse. Both the pure two-body and interfer-
ence components contribute about the same additional
strength to the response beneath the QE peak, consti-
tuting almost 20% of the peak height. This enhancement
significantly improves the agreement between theoretical
calculations and experimental data. As highlighted in
several previous works — see for instance Refs. [41, 76]
— the pure two-body term becomes dominant in the dip
region. It is important to note that the missing strength
compared to experimental data has to be ascribed to
resonance-production mechanisms [66], which have not
been accounted for in the present work.

Thanks to our improved numerical implementation of
the two-body currents, we are now able to separately
compute the contribution of each isospin pair to the nu-
clear response. Figures 3 show the electromagnetic re-
sponses for |q| = 500 MeV, categorized into pp, pn, and

FIG. 2. Longitudinal (upper panel) and transverse (lower
panel) response functions from e-12C scattering at |q| = 570
MeV. Contributions are separated into pure one-body (red),
pure two-body (orange), interference between one and two-
body (purple), and total (blue).
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gitudinal and transverse response functions of 12C, re-
spectively, at a momentum transfer of |q| = 570 MeV
compared against the world data analysis conducted by
Jourdan [75]. Within the extended factorization scheme,
final state interaction effects are included by convoluting
the impulse-approximation results with a folding func-
tion that both shifts and redistributes strength from the
peak to the tails [34]. Contributions from pure one- and
two-body currents, as well as their interference, are sepa-
rately shown to better identify their relative importance.
Consistent with the GFMC calculations in Ref. [25],

two-body currents in the longitudinal channel appear to
have a negligible effect. The pure two-body component is
nearly zero in the QE peak, while it brings about a mod-
est enhancement of the response in the dip region. On
the other hand, the interference contribution is small in
magnitude and negative, resulting in a minor depletion
of the total response. The scenario is markedly different

in the transverse channel, where two-body effects play a
crucial role. This is not entirely surprising, given that
the dominant contribution is the Delta current, which is
fully transverse. Both the pure two-body and interfer-
ence components contribute about the same additional
strength to the response beneath the QE peak, consti-
tuting almost 20% of the peak height. This enhancement
significantly improves the agreement between theoretical
calculations and experimental data. As highlighted in
several previous works — see for instance Refs. [41, 76]
— the pure two-body term becomes dominant in the dip
region. It is important to note that the missing strength
compared to experimental data has to be ascribed to
resonance-production mechanisms [66], which have not
been accounted for in the present work.

Thanks to our improved numerical implementation of
the two-body currents, we are now able to separately
compute the contribution of each isospin pair to the nu-
clear response. Figures 3 show the electromagnetic re-
sponses for |q| = 500 MeV, categorized into pp, pn, and

FIG. 2. Longitudinal (upper panel) and transverse (lower
panel) response functions from e-12C scattering at |q| = 570
MeV. Contributions are separated into pure one-body (red),
pure two-body (orange), interference between one and two-
body (purple), and total (blue).
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In these relations the pre-factor of 1
2 comes from averaging over initial state spins..

Let us now compute the reduced matrix elements for the CCQE interaction νβ+n→ ℓ−α+p+.
They can be expressed as

AL,α = −2Vud

v2
[ūℓα(pℓα)γµPLuν(pν)] ⟨p(pp)∣q̄uγµPLqd∣n(pn)⟩ ,

AR,α = −2Vud

v2
[ūℓα(pℓα)γµPLuν(pν)] ⟨p(pp)∣q̄uγµPRqd∣n(pn)⟩ ,

AS,α = −Vud

v2
[ūℓα(pℓα)PLuν(pν)] ⟨p(pp)∣q̄uqd∣n(pn)⟩ ,

AP,α = Vud

v2
[ūℓα(pℓα)PLuν(pν)] ⟨p(pp)∣q̄uγ5qd∣n(pn)⟩ ,

AT,α = −Vud

2v2
[ūℓα(pℓα)σµνPLuν(pν)] ⟨p(pp)∣q̄uσµνqd∣n(pn)⟩ ,

(2.9)

where the ui are the spinor wave functions of the leptons and hadrons (not to be confused
with the up-quark field, u). The reduced matrix elements for the corresponding anti-neutrino
interaction ν̄β + p → ℓ+α + n, are obtained by replacing uℓα → vν , uν → vℓα , and taking the
complex conjugate of the hadronic current as well as the CKM element Vud. Note that, as
long as neutrino masses are neglected, these amplitudes do no longer depend on the neutrino
flavor as this dependence has been factored out in eq. (2.4). The hadronic matrix elements
can be parameterized in terms of a set of Lorentz-invariant form factors, one corresponding
to each possible quark bilinear [42, 43]:

⟨p(pp)∣q̄uγµqd∣n(pn)⟩ = ūp(pp)[GV (Q2)γµ + i
G̃T (V )(Q2)

2MN
σµνq

ν − G̃S(Q2)
2MN

qµ]un(pn) ,
(2.10)

⟨p(pp)∣q̄uγµγ5qd∣n(pn)⟩ = ūp(pp)[GA(Q2)γµγ5 + i
G̃T (A)(Q2)

2MN
σµνq

νγ5 − G̃P (Q2)
2MN

qµγ5]un(pn) ,
(2.11)

⟨p(pp)∣q̄uqd∣n(pn)⟩ = GS(Q2) ūp(pp)un(pn) , (2.12)

⟨p(pp)∣q̄uγ5qd∣n(pn)⟩ = GP (Q2) ūp(pp)γ5un(pn) , (2.13)

⟨p(pp)∣q̄uσµνqd∣n(pn)⟩ = ūp(pp)[GT (Q2)σµν − i

MN
G(1)

T (Q2)(qµγν − qνγµ)
− i

M2
N

G(2)
T (Q2)(qµPν − qνPµ) − i

MN
G(3)

T (Q2)(γµq/γν − γνq/γµ)]un(pn) , (2.14)

where up and un are the proton and neutron spinors, q = pp−pn is the transferred momentum,
Q2 ≡ −q2, P = pn + pp, and MN ≡ (mn +mp)/2 is the average nucleon mass.

The crucial task now is to obtain the form factors GX .

1. Vector current: In this case, there are three contributions, parameterized by the
vector form factor GV (Q2), the induced tensor-vector form factor G̃T (V )(Q2), and the

– 5 –
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• Induced pseudo-scalar (pion-pole dominance)

Figure 1. The nucleon form factors appearing in eqs. (2.10) to (2.14) as a function of Q2 = −q2.
For the form factors affected by the uncertainty in GA(Q2), the left panel shows results for three
different parametrizations, namely the dipole form factor with mA = 0.961GeV (thin solid lines), the
z-expansion fitted to neutrino–deuterium scattering data (“D2”, shaded bands) [50], and a z-expansion
fit to lattice QCD calculations by the RQCD Collaboration (hatched bands) [53]. In the latter two
cases, the width of the colored bands indicates the uncertainties quoted in the respective references.
The remaining form factors are shown in the right panel. Note the sign change from negative to
positive for G(1)

T and from positive to negative for G(2)
T .

Here,mq = 3.410(43)MeV is the average light quark mass, taken from lattice calculations
(2019 FLAG review, Nf = 2 + 1 + 1 [55–57]). Note the large prefactors proportional to
MN/mq and Q2/(MNmq), which are both of order 103. These prefactors lead to an
enhancement of, e.g., GP (Q2) compared to other form factors.

We can moreover use the pion pole dominance (PPD) ansatz to derive an approximate
relation between the induced-pseudoscalar and axial form factors. More precisely, we
use the fact that GP (Q2) is dominated by the pion-pole contribution because the pseu-
doscalar current has the same quantum numbers as the pion. This suggests to write
GP (Q2) = GP (0)m2

π/(Q2 + m2
π), where mπ is the pion mass. Moreover, in the low-

Q2 limit, eq. (2.21) implies GP (Q2) ≃ (MN/mq)GA(Q2). Plugging both relations into
eq. (2.21) leads to [14, 58, 59]:

G̃P (Q2) = − 4M2
N

Q2 +m2
π
GA(Q2) . (low-Q2 limit) (2.22)

For higher accuracy, we will instead use the z-expansion parametrization [48] also for
the pseudoscalar form factors, and write:

G̃P (Q2) = − 4M2
N

Q2 +m2
π

∞∑
k=0

aP̃k z(Q2)k , (2.23)
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X aX0 aX1 aX2 aX3 aX4 aX5 aX6

A 1.009 −1.756 −1.059 1.621 3.919 −5.739 2.005

P̃ 1.008 −1.831 −1.713 4.994 −1.522 −1.984 1.047

P 1.066 −1.461 −1.053 −2.504 12.446 −12.260 3.766

Table 1. The coefficients of the z-expansion parametrization of the axial (first line) induced pseu-
doscalar (second line) and pseudoscalar (last line) form factors, determined by the lattice QCD calcu-
lations from Ref. [53].

and

GP (Q2) = MN

mq

m2
π

Q2 +m2
π

∞∑
k=0

aPk z(Q2)k , (2.24)

where the aP̃k and aPk coefficients are found by fitting to lattice QCD results. The first
few coefficients in the expansion, taken from ref. [53], are shown in table 1. We have
checked that these lattice QCD results satisfy the PPD and PCAC relations.

4. Scalar current: We can find the scalar form factor by using the conservation of the
vector current (CVC), which relates the divergence of the vector current in (eq. (2.10))
to the scalar current (eq. (2.12)) and leads to [54]

GS(Q2) = −δMQCD
N

δmq
GV (Q2) + Q2/2MN

δmq
G̃S(Q2) , (2.25)

where δMQCD
N = mn −mp = 2.58(18)MeV is the difference between the neutron and

proton mass in pure QCD [54]) and δmq = md −mu = 2.527(47)MeV [55]. Note that
the induced tensor-vector form factor, G̃T (V ), does not appear in eq. (2.25) because the
divergence of the corresponding term in eq. (2.10) vanishes.

The induced scalar form factor G̃S(Q2) poses a problem as no robust measurements
or lattice calculations for it exist. This is not surprising, given that, using Weinberg’s
language from ref. [42], it corresponds to a second-class current (that is, a current that
violates G parity). Such currents vanish in the isospin-symmetric limit, so their physical
effects are always suppressed by small isospin-breaking factor such as δMN or δmq.
In eq. (2.25), however, G̃S(Q2) appears with a prefactor that is enhanced by 1/δmq,
compensating for the smallness of the form factor.

In the absence of robust measurements or lattice calculations for G̃S(Q2), we consider
two approaches. The first is to simply set G̃S(Q2) = 0. The second one is based on the
constituent quark model (CQM) which relates G̃S to the vector form factor, but suffers
from large theoretical uncertainties. The CQM prediction is [60]

G̃S(Q2) = 2MN(mu +md)CQM(δM
QCD
N

2MN
gA − δmq(mu +md)CQM)GV (Q2) , (2.26)
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• Induced scalar we used a constituent quark model parametrization

• Tensor current. We adopt the isospin symmetric limit:

where in the constituent quark model one takes mu =md =mp/3.
5. Tensor current: Unlike the vector, axial-vector, scalar, and pseudoscalar currents,

constraining the matrix elements of the antisymmetric tensor current is much more chal-
lenging. While the relevant form factors are not easily determined through experimental
data, Ward identities, or low-energy theorems, lattice QCD techniques and theoretical
considerations can nevertheless provide valuable insights. In the following, we draw from
Ref. [61]. In the isospin-symmetric limit, which we adopt here, the G(3)

T (Q2) form factor
vanishes, and the following relation between the charged and neutral currents holds [55]:

⟨p(pp)∣ūσµνd∣n(pn)⟩ = ⟨p(pp)∣ūσµνu − d̄σµνd∣p(pp)⟩
= ⟨n(pn)∣d̄σµνd − ūσµνu∣n(pn)⟩ . (2.27)

The two equivalent matrix elements on the right-hand side of this equation can be
evaluated on the lattice. The results can be written as

GT (Q2) = F u
1,T (Q2) − F d

1,T (Q2) , (2.28)

G(1)
T (Q2) = F u

2,T (Q2) − F d
2,T (Q2) , (2.29)

G(2)
T (Q2) = F u

3,T (Q2) − F d
3,T (Q2) , (2.30)

with the F q
i,T (Q2) (q = u, d) functions parameterized by:

F q
1,T (Q2) = ±1

2
[F u

1,T (0) − F d
1,T (0)]Db1(Q2) + 1

2
[F u

1,T (0) + F d
1,T (0)]Dh1(Q2) , (2.31)

F u
2,T (Q2) = −MN

2mπ
Bπ,u

T (0)[2Gp
M(Q2) +Gn

M(Q2)] + 2
M2

N

m2
b1

F u
1,T (0)Db1(Q2) , (2.32)

F d
2,T (Q2) = −MN

2mπ
Bπ,u

T (0)[Gp
M(Q2) + 2Gn

M(Q2)] + 2
M2

N

m2
b1

F d
1,T (0)Db1(Q2) , (2.33)

F u
3,T (Q2) = MN

4mπ
Bπ,u

T (0)[2F p
2 (Q2) + Fn

2 (Q2)] − M2
N

m2
b1

F u
1,T (0)Db1(Q2) , (2.34)

F d
3,T (Q2) = MN

4mπ
Bπ,u

T (0)[F p
2 (Q2) + 2Fn

2 (Q2)] − M2
N

m2
b1

F d
1,T (0)Db1(Q2) . (2.35)

In the first of these relations, the plus sign corresponds to q = u and the minus sign to
q = d. Numerically, Ref. [61] gives F u

1,T (0) = 0.784, F d
1,T (0) = −0.204, and Bπ,u

T (0) = 0.195

for the tensor charges that determine the normalization. The functions GN
M(Q2) and

FN
2 (Q2) are the Sachs magnetic and Pauli form factors defined in eq. (2.17). Finally,

Db1/h1
(Q2) = m2

b1/h1

m2
b1/h1

+Q2
(2.36)

are dipole functions with mh1 = 1.166GeV and mb1 = 1.229GeV.
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We used Bayesian statistics to quantify the uncertainty of the ANN. We treat the weights  as a 
probability distribution. 


The posterior probability of the parameters  given the measured cross sections Y can be written 
as


𝒲

𝒲

We assign a normal Gaussian prior for each neural network parameter and assume a Gaussian distribution 
for the likelihood based on a loss function obtained from a least-squares fit to the empirical data


We increase the experimental errors σi listed in arXiv:nucl-ex/0603032 including an additional term 
proportional to the experimental cross section value: σi → σi + 0.05yi .


The posterior distribution is sampled using the NumPyro No-U-Turn Sampler extension of HMC. We 
also implemented the standard HMC algorithm and validated results. 


P(𝒲 |Y ) =
P(Y |𝒲)P(𝒲)

P(Y )

P(Y |𝒲) = exp (−
χ2

2 ) χ2 =
N

∑
i=1

[yi − ̂yi(𝒲))]2

σ2
i
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2. Additional comparisons with Rosenbluth-separation analyses

We provide additional predictions of the ANN for the electromagnetic responses of 4He, 12C,
and 40Ca for the kinematics where Rosenbluth separation data are available in the literature.

The ANN responses of 4He, displayed in Figure 3, are in excellent agreement with the Rosen-
bluth separation analyses, and they share some distinctive features with the latter. The ANN
extraction of the responses generally exhibits smaller uncertainties in the transverse channel than
in the longitudinal, where the uncertainties tend to grow with the magnitude of the momentum
transfer. At low energy transfers, the uncertainties in the predictions are large due to the elas-
tic contribution and transitions to low-lying excited states, reducing the precision of the ANN
responses. This behavior is primarily due to the scarcity of experimental data at low energies,
which is insu�cient to constrain the parameters of the ANN. Additionally, because the contri-
butions from elastic and low-lying transitions strongly depend on the specific nuclear target, the
ANN cannot leverage information from one nucleus to predict responses for a di↵erent one.

Figure 3: Rosenbluth separation for 4He at q = 300, 500, 600 MeV/c. Data taken from Carlson et al. (2002).

Similar trends are observed in 12C and 40Ca, shown in 4. We note however that the ANN
transverse response of 40Ca consistently overestimates the Rosenbluth-separation data from Jour-
dan (1996). In the following, we investigate closer the source of this discrepancy.

Rosenbluth separation for
40

Ca

Experimental electron scattering on 40Ca was primarily measured at two facilities: Saclay Meziani
et al. (1984) and MIT-Bates Williamson et al. (1997), collecting 1016 and 296 data- points re-
spectively. Both experiments performed the Rosenbluth separation at several values of momen-
tum transfer, leading to di↵erent results. Later Jourdan (1996) re-examined the data taking all
available measurements into account.

We employed our ANN to investigate the source of discrepancy between the two experiments
and to assess how our predictions depend on the datasets used in the training. In Fig. 5, we show

4
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Figure 4: Rosenbluth separation for 12C and 40Ca at q = 380, 570 MeV/c. Data taken from Jourdan (1996).

our predictions where we restrict the training datasets to either Saclay or Bates data. As we can
see, our results coincide with the Rosenbluth separation performed by each experiment.

When using the datasets combined, our ANN tends more towards Saclay predictions, since
this experiment provides over three times more data points. In addition, we find a q-dependence
in the discrepancy between both Rosenbluth-separation analyses. For instance, in Fig. 5, we show
results for q = 300 MeV/c, where the discrepancy is considerably smaller for the longitudinal
response.

5
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Figure 4: Rosenbluth separation for 12C and 40Ca at q = 380, 570 MeV/c. Data taken from Jourdan (1996).

our predictions where we restrict the training datasets to either Saclay or Bates data. As we can
see, our results coincide with the Rosenbluth separation performed by each experiment.

When using the datasets combined, our ANN tends more towards Saclay predictions, since
this experiment provides over three times more data points. In addition, we find a q-dependence
in the discrepancy between both Rosenbluth-separation analyses. For instance, in Fig. 5, we show
results for q = 300 MeV/c, where the discrepancy is considerably smaller for the longitudinal
response.
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Figure 5: The ANN predictions when for 40Ca only data from a single experiment were used for training. Data taken
from Meziani et al. (1984) and Williamson et al. (1997). In the left column we show our results compared to the
Rosenbluth separation performed by each experiment for a similar momentum transfer q = 400 MeV/c (Bates) and
q = 410 MeV/c (Saclay). In the right column we compare both predictions at q = 300 MeV/c.
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FIG. 1. Feynman diagrams describing of the first two contri-
butions to the two-body currents associated with�-excitation
processes. Solid, thick green, and dashed lines correspond to
nucleons, deltas, pions, respectively. The wavy line represents
the vector boson.
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where k
0 and p

0 are the initial and final momentum of
the second nucleon, respectively, while k

0
⇡

= p
0
� k

0 is
the momentum of the ⇡ exchanged in the two depicted
diagrams of Fig. 1, f
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with ⇤⇡N� = 1150 MeV and ⇤⇡ = 1300 MeV. The term
⌧± = (⌧x±i⌧y)/2 is the isospin raising/lowering operator.
In Eq. (16), j
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a
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where k is the momentum of the initial nucleon which ab-
sorbs the incoming momentum q̃ and p� = q̃+k, yielding
p
0
� = e(k) + !̃. We introduced q̃ = (!̃,q) to account for

the fact that the initial nucleons are o↵-shell. A similar
definition can be written down for j

µ

b
; more details are

reported in Ref. [23, 24]. For C
V

3 we adopted the model
of Ref. [87], yielding

C
V

3 =
2.13

(1 � q2/M2
V

)2
1

1 � q2/(4M
2
V

)
, (21)

with MV = 0.84 GeV. Following the discussion of
Ref. [86], we neglected the terms C

V

4 and C
V

5 which are
expected to be suppressed by O(k/mN ), while C

V

6 = 0 by
conservation of the vector current. However, it is worth
mentioning that including these terms in the current op-
erator would not pose any conceptual di�culty. To be
consistent, in the axial part we only retain the leading
contribution of Eq. (20), which is the term proportional
to C

A

5 defined as [88]

C
A

5 =
1.2

(1 � q2/MA�)2
⇥

1

1 � q2/(3MA�)2)
, (22)

with MA� = 1.05 GeV.
The Rarita-Schwinger propagator

G
↵�(p�) =

P
↵�(p�)

p
2
� � M

2
�

, (23)

is proportional to the spin 3/2 projection operator
P

↵�(p�). In order to account for the possible decay
of the � into a physical ⇡N , we replace M� ! M� �

i�(p�)/2 [89, 90] where the last term is the energy de-
pendent decay width given by

�(p�) =
(4f⇡N�)2

12⇡m2
⇡

|d|3
p

s
(mN + Ed)R(r2) . (24)

In the above equation, (4f⇡N�)2/(4⇡) = 0.38, s = p
2
�

is the invariant mass, d is the decay three-momentum in
the ⇡N center of mass frame, such that

|d|2 =
1

4s
[s � (mN + m⇡)2][s � (mN � m⇡)2] (25)

and Ed =
p

m
2
N

+ d2 is the associated energy. The ad-
ditional factor

R(r2) =
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⇤2
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⇤2
R
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◆
, (26)

depending on the ⇡N three-momentum r, with r2 =
(Ed �

p
m2

⇡
+ d2)2 � 4d2 and ⇤2

R
= 0.95 m

2
N

, is in-
troduced to improve the description of the experimental
phase-shift �33 [89]. The medium e↵ects on the � prop-
agator are accounted for by modifying the decay width
as

��(p�) ! ��(p�) � 2Im[U�(p�, ⇢ = ⇢0)], (27)

Diagrams including the Delta current depend on many parameters.
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where k
0 and p

0 are the initial and final momentum of
the second nucleon, respectively, while k
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with ⇤⇡N� = 1150 MeV and ⇤⇡ = 1300 MeV. The term
⌧± = (⌧x±i⌧y)/2 is the isospin raising/lowering operator.
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where k is the momentum of the initial nucleon which ab-
sorbs the incoming momentum q̃ and p� = q̃+k, yielding
p
0
� = e(k) + !̃. We introduced q̃ = (!̃,q) to account for

the fact that the initial nucleons are o↵-shell. A similar
definition can be written down for j

µ

b
; more details are

reported in Ref. [23, 24]. For C
V

3 we adopted the model
of Ref. [87], yielding

C
V

3 =
2.13

(1 � q2/M2
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1

1 � q2/(4M
2
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, (21)

with MV = 0.84 GeV. Following the discussion of
Ref. [86], we neglected the terms C

V

4 and C
V

5 which are
expected to be suppressed by O(k/mN ), while C

V

6 = 0 by
conservation of the vector current. However, it is worth
mentioning that including these terms in the current op-
erator would not pose any conceptual di�culty. To be
consistent, in the axial part we only retain the leading
contribution of Eq. (20), which is the term proportional
to C

A

5 defined as [88]

C
A

5 =
1.2

(1 � q2/MA�)2
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1

1 � q2/(3MA�)2)
, (22)

with MA� = 1.05 GeV.
The Rarita-Schwinger propagator
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is proportional to the spin 3/2 projection operator
P

↵�(p�). In order to account for the possible decay
of the � into a physical ⇡N , we replace M� ! M� �

i�(p�)/2 [89, 90] where the last term is the energy de-
pendent decay width given by

�(p�) =
(4f⇡N�)2
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(mN + Ed)R(r2) . (24)

In the above equation, (4f⇡N�)2/(4⇡) = 0.38, s = p
2
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is the invariant mass, d is the decay three-momentum in
the ⇡N center of mass frame, such that

|d|2 =
1

4s
[s � (mN + m⇡)2][s � (mN � m⇡)2] (25)

and Ed =
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+ d2 is the associated energy. The ad-
ditional factor
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depending on the ⇡N three-momentum r, with r2 =
(Ed �
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⇡
+ d2)2 � 4d2 and ⇤2

R
= 0.95 m

2
N

, is in-
troduced to improve the description of the experimental
phase-shift �33 [89]. The medium e↵ects on the � prop-
agator are accounted for by modifying the decay width
as

��(p�) ! ��(p�) � 2Im[U�(p�, ⇢ = ⇢0)], (27)
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where k
0 and p

0 are the initial and final momentum of
the second nucleon, respectively, while k
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with ⇤⇡N� = 1150 MeV and ⇤⇡ = 1300 MeV. The term
⌧± = (⌧x±i⌧y)/2 is the isospin raising/lowering operator.
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where k is the momentum of the initial nucleon which ab-
sorbs the incoming momentum q̃ and p� = q̃+k, yielding
p
0
� = e(k) + !̃. We introduced q̃ = (!̃,q) to account for

the fact that the initial nucleons are o↵-shell. A similar
definition can be written down for j

µ

b
; more details are

reported in Ref. [23, 24]. For C
V

3 we adopted the model
of Ref. [87], yielding

C
V

3 =
2.13

(1 � q2/M2
V

)2
1

1 � q2/(4M
2
V

)
, (21)

with MV = 0.84 GeV. Following the discussion of
Ref. [86], we neglected the terms C

V

4 and C
V

5 which are
expected to be suppressed by O(k/mN ), while C

V

6 = 0 by
conservation of the vector current. However, it is worth
mentioning that including these terms in the current op-
erator would not pose any conceptual di�culty. To be
consistent, in the axial part we only retain the leading
contribution of Eq. (20), which is the term proportional
to C

A

5 defined as [88]

C
A

5 =
1.2

(1 � q2/MA�)2
⇥

1

1 � q2/(3MA�)2)
, (22)

with MA� = 1.05 GeV.
The Rarita-Schwinger propagator
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p
2
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2
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, (23)

is proportional to the spin 3/2 projection operator
P

↵�(p�). In order to account for the possible decay
of the � into a physical ⇡N , we replace M� ! M� �

i�(p�)/2 [89, 90] where the last term is the energy de-
pendent decay width given by

�(p�) =
(4f⇡N�)2

12⇡m2
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|d|3
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s
(mN + Ed)R(r2) . (24)

In the above equation, (4f⇡N�)2/(4⇡) = 0.38, s = p
2
�

is the invariant mass, d is the decay three-momentum in
the ⇡N center of mass frame, such that

|d|2 =
1

4s
[s � (mN + m⇡)2][s � (mN � m⇡)2] (25)

and Ed =
p
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2
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+ d2 is the associated energy. The ad-
ditional factor

R(r2) =
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depending on the ⇡N three-momentum r, with r2 =
(Ed �

p
m2

⇡
+ d2)2 � 4d2 and ⇤2

R
= 0.95 m

2
N

, is in-
troduced to improve the description of the experimental
phase-shift �33 [89]. The medium e↵ects on the � prop-
agator are accounted for by modifying the decay width
as

��(p�) ! ��(p�) � 2Im[U�(p�, ⇢ = ⇢0)], (27)

Parametrization chosen for the vector ff:

Current extractions of CA5 (0) rely on single pion production data from deuterium bubble chamber 
experiments; estimated uncertainty ~ 15 %
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where k
0 and p

0 are the initial and final momentum of
the second nucleon, respectively, while k
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with ⇤⇡N� = 1150 MeV and ⇤⇡ = 1300 MeV. The term
⌧± = (⌧x±i⌧y)/2 is the isospin raising/lowering operator.
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where k is the momentum of the initial nucleon which ab-
sorbs the incoming momentum q̃ and p� = q̃+k, yielding
p
0
� = e(k) + !̃. We introduced q̃ = (!̃,q) to account for

the fact that the initial nucleons are o↵-shell. A similar
definition can be written down for j

µ

b
; more details are

reported in Ref. [23, 24]. For C
V

3 we adopted the model
of Ref. [87], yielding

C
V

3 =
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with MV = 0.84 GeV. Following the discussion of
Ref. [86], we neglected the terms C

V

4 and C
V

5 which are
expected to be suppressed by O(k/mN ), while C

V

6 = 0 by
conservation of the vector current. However, it is worth
mentioning that including these terms in the current op-
erator would not pose any conceptual di�culty. To be
consistent, in the axial part we only retain the leading
contribution of Eq. (20), which is the term proportional
to C

A

5 defined as [88]

C
A

5 =
1.2

(1 � q2/MA�)2
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with MA� = 1.05 GeV.
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is proportional to the spin 3/2 projection operator
P

↵�(p�). In order to account for the possible decay
of the � into a physical ⇡N , we replace M� ! M� �

i�(p�)/2 [89, 90] where the last term is the energy de-
pendent decay width given by

�(p�) =
(4f⇡N�)2
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In the above equation, (4f⇡N�)2/(4⇡) = 0.38, s = p
2
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is the invariant mass, d is the decay three-momentum in
the ⇡N center of mass frame, such that

|d|2 =
1

4s
[s � (mN + m⇡)2][s � (mN � m⇡)2] (25)

and Ed =
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+ d2 is the associated energy. The ad-
ditional factor
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depending on the ⇡N three-momentum r, with r2 =
(Ed �
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+ d2)2 � 4d2 and ⇤2

R
= 0.95 m

2
N

, is in-
troduced to improve the description of the experimental
phase-shift �33 [89]. The medium e↵ects on the � prop-
agator are accounted for by modifying the decay width
as

��(p�) ! ��(p�) � 2Im[U�(p�, ⇢ = ⇢0)], (27)
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where k
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with ⇤⇡N� = 1150 MeV and ⇤⇡ = 1300 MeV. The term
⌧± = (⌧x±i⌧y)/2 is the isospin raising/lowering operator.
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where k is the momentum of the initial nucleon which ab-
sorbs the incoming momentum q̃ and p� = q̃+k, yielding
p
0
� = e(k) + !̃. We introduced q̃ = (!̃,q) to account for

the fact that the initial nucleons are o↵-shell. A similar
definition can be written down for j

µ

b
; more details are

reported in Ref. [23, 24]. For C
V

3 we adopted the model
of Ref. [87], yielding
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with MV = 0.84 GeV. Following the discussion of
Ref. [86], we neglected the terms C

V

4 and C
V

5 which are
expected to be suppressed by O(k/mN ), while C

V

6 = 0 by
conservation of the vector current. However, it is worth
mentioning that including these terms in the current op-
erator would not pose any conceptual di�culty. To be
consistent, in the axial part we only retain the leading
contribution of Eq. (20), which is the term proportional
to C

A

5 defined as [88]

C
A

5 =
1.2

(1 � q2/MA�)2
⇥

1

1 � q2/(3MA�)2)
, (22)

with MA� = 1.05 GeV.
The Rarita-Schwinger propagator

G
↵�(p�) =

P
↵�(p�)

p
2
� � M

2
�

, (23)

is proportional to the spin 3/2 projection operator
P

↵�(p�). In order to account for the possible decay
of the � into a physical ⇡N , we replace M� ! M� �

i�(p�)/2 [89, 90] where the last term is the energy de-
pendent decay width given by

�(p�) =
(4f⇡N�)2

12⇡m2
⇡

|d|3
p

s
(mN + Ed)R(r2) . (24)

In the above equation, (4f⇡N�)2/(4⇡) = 0.38, s = p
2
�

is the invariant mass, d is the decay three-momentum in
the ⇡N center of mass frame, such that

|d|2 =
1

4s
[s � (mN + m⇡)2][s � (mN � m⇡)2] (25)

and Ed =
p

m
2
N

+ d2 is the associated energy. The ad-
ditional factor

R(r2) =

✓
⇤2

R

⇤2
R
� r2

◆
, (26)

depending on the ⇡N three-momentum r, with r2 =
(Ed �

p
m2

⇡
+ d2)2 � 4d2 and ⇤2

R
= 0.95 m

2
N

, is in-
troduced to improve the description of the experimental
phase-shift �33 [89]. The medium e↵ects on the � prop-
agator are accounted for by modifying the decay width
as

��(p�) ! ��(p�) � 2Im[U�(p�, ⇢ = ⇢0)], (27)
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ACHILLES: A CHicago Land Lepton Event Simulator
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J.Isaacson, W Jay, A. Lovato, P Machado, NR:  
• arXiv:2205.06378 
• PRD 105 (2022) 9, 096006 
• PRC 103 (2021) 1, 015502 

The propagation of nucleons through the nuclear medium is crucial in the analysis of electron-nucleus 
scattering and neutrino oscillation experiments.


• Charge exchange

• Elastic scattering

• Pion Production

• Absorption

• ….

• Develop a theory driven, modular event generator
• Provide automated BSM calculations for neutrino 

experiments
• Uses realistic QMC nuclear calculations as inputs
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ACHILLES: A CHicago Land Lepton Event Simulator
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Completed the implementation of QE, 12b interference and pion production for both electron and 
neutrino sectors. 


BSM scenarios can be readily implemented (in the leptonic sector), using the available reaction 
mechanisms. Next studies: dark neutrinos, HNL produced via magnetic moments 


N. Steinberg, J. Isaacson, NR, et al, in preparation

mailto:nrocco@fnal.gov


Noemi Rocco, nrocco@fnal.gov

QMC Spectral function of light nuclei
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Figure 1: VMC mean-field and full momentum distributions of 4He.

Z
dE

d
3
k

(2⇡)3
Pn(k, E) =

Z
d
3
k

(2⇡)3
nn(k) = A� Z , (4)

where Z is the number of protons and A is the number of nucleons of a given
nucleus. This normalization is consistent with the one of the variational
Monte Carlo (VMC) single-nucleon momentum distribution reported in [2].

Spectral function of
4
He

For clarity, let us deal with the proton spectral function first. The single-
nucleon (mean-field) contribution P

MF

p (k, E) corresponds to identifying | A�1

n i
with | 3

H

0
i, the ground-state of 3H

P
MF

p (k, E) = n
MF

p (k)�
⇣
E � B4He +B3H � k

2

2m3H

⌘
. (5)

where B4He ' 28.30 MeV and B3H ' 8.48 MeV are the binding energies of
4He and 3H, respectively and m3H is the mass of the recoiling nucleus. In the
above equation we introduced the mean-field proton momentum distribution

n
MF

p (k) = |h 4
He

0
|[|ki ⌦ | 3

H

0
i]|2 , (6)

in which h 4
He

0
|[|ki ⌦ | 3

H

0
i is the Fourier transform of the single-nucleon

radial overlap that can be computed within both VMC and Green’s function
Monte Carlo (GFMC) [3].

2

PMF

p (k, E) = nMF

p (k)�
⇣
E �B4He +B3H � k2

2m3H

⌘

|h 
4
He

0
|[|ki ⌦ | 

3
H

0
i]|2

• The single-nucleon overlap has been computed 
within VMC ( center of mass motion fully 
accounted for)0 2 4 6 8 100.0
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4He(0+) -> 3H(1/2+)+p - AV18+UX

SF s1/2 = 1.62

Pp,n(k, E) =
X

n

���h A
0 |
⇥
|ki| A�1

n i
⇤���

2

⇥ �(E + EA
0 � EA�1

n )

=PMF (k, E) + P corr(k, E)

• Single-nucleon spectral function:

mailto:nrocco@fnal.gov


Noemi Rocco, nrocco@fnal.gov

Spectral function approach 
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P corr
p (k, E) =

X

n

Z
d3k0

(2⇡)3
|h A

0 |[|ki |k0i | A�2
n i]|2�(E + EA

0 � e(k0)� EA�2
n )

��Ј
��φ
��ϵ
��ϯ
��Κ
��Θ
��ϩ

� ��� � ��� � ��� � ��� �

ԝ ։	Ԡ~ Ԇ
����
U

7K
ϯ V

Ԡ U7K�V

ԝ։	Ԡ ~Ԇ
ԝ։	Ԡ ~Ԇ
	ԡքօ � ���
ԝ։	Ԡ ~Ԇ
	ԡքօ � ���
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 Only SRC pairs should be considered:                and                       be orthogonalized |k0i| A�2

n i

One can introduce cuts on the 
relative distance between the 
particles in the two-body 
momentum distribution 

Using QMC techniques
X

⌧k0=p,n

np,⌧k0 (k,k
0)�

⇣
E �B4He � e(k0) +BA�2 �

(k+ k0)2

2mA�2

⌘
A

| A�1
0 i
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• The p-shell contribution has been obtained 
by FT the radial overlaps:

12C(0+) !11 B(3/2�) + p
12C(0+) !11 B(1/2�) + p
12C(0+) !11 B(3/2�)⇤ + p .

• The quenching of the spectroscopic factors automatically emerges from the VMC calculations

17

Extended Data Fig. 8. | Radiative and coulomb corrections. The combined radiative and Coulomb corrections,
RCA/d(xB), for (e, e

0p) events for nucleus A relative to the deuteron for (a) carbon, (b) aluminum, (c) iron, and (d) lead. The
points show the correction factors and the error bars show the 1� or 68% confidence limits.

Extended Data Fig. 9. | Calculated nucleon momentum distributions in
12
C. The filled blue circles represent the

total momentum distribution n(k) of 12C computed within the VMC method. The solid orange line shows the sum of the p-wave
overlaps between the 12C and 11B+p VMC wave functions. The momentum distributions obtained by adding to the p-wave
overlaps the di↵erent prescription for the s-wave contribution are displayed by the green dashed line (harmonic oscillator),
dotted red line (Wood-Saxon) and dash-dotted purple line (s-wave overlaps between 4He and the 3H+p VMC wave functions).

Computing the s-shell contribution is non trivial 
within VMC. We explored different alternatives:

• Quenched Harmonic Oscillator

• Quenched Wood Saxon 

• VMC overlap associated for the 
  transition

4
He(0

+
) ! 3

H(1/2+) + p

R. Crespo, et al, Phys.Lett.B 803 (2020) 135355

Korover, et al, CLAS collaboration PRC 107 (2023) 6, L061301
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12

FIG. 5. Breakdown into one- and two-body current contributions of the ⌫µ flux-averaged di↵erential cross sections for T2K.
The color code is as in Fig. 4.

FIG. 6. Percent change in the value of the MiniBooNE flux-averaged cross section for 0.5 < cos ✓µ < 0.6 vs. percent change in
two parameters describing � resonance production and decay entering calculations of two-body current (MEC) e↵ects: CA

5 (Q2)
is the dominant N ! � transition form factor, and ⇤R renormalizes the self energy of the � as described in Sec. II B.

found for ⇤R. Current extractions of C5(0) rely on single
pion production data from deuterium bubble chamber
experiments [10–12], and due to limited statistics model
assumptions on the relations between N ! � transition
form factors are typically included to reduce the number

of fit parameters. Depending on the model assumptions
used, the resulting uncertainty on C5(0) is estimated
to be 10-15% in the analysis of Ref. [122], with similar
though slightly less conservative uncertainties estimated
in Refs. [85, 121]. Note that all of these analysis assume a

A 15% variation in either C5A(0) or ΛR changes the flux-averaged cross section by roughly 5% 

Percent change in the MiniBooNE cross section versus the percent change in the two-body 
current parameters for 0.5 < cos θμ < 0.6, Tμ = 325 MeV 
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Two-body currents - Delta contribution

G↵�(p�) =
P↵�(p�)

p2� �M2
�

Rarita-Schwinger propagator

P↵�(p�) = (p� +M�)
h
g↵� � 1

3
�↵�� � 2

3

p↵�p
�
�

M2
�

+
1

3

p↵��
� � p���

↵

M�

i
./

The spin 3/2 projection operator reads

To account for the resonant behavior of the Δ: M� ! M� � i�(p�)/2

�(p�) = �2Im⌃⇡N(s) =
(4f⇡N�)2

12⇡m2
⇡

|d|3p
s
(mN + Ed)R(r

2)

 d is the decay three-momentum in the πN center of mass frame

��(p�) ! ��(p�)� 2Im[U�(p�, ⇢ = ⇢0)]In medium effects of the Δ
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Comparing different many-body methods
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• e -3H: inclusive cross section

• Comparisons among QMC, SF, and STA approaches: first step to precisely quantify the 
uncertainties inherent to the factorization of the final state. 

• Gauge the role of relativistic effects in the energy region relevant for neutrino experiments. 

14

FIG. 5: Inclusive double-di↵erential cross sections for electron scattering on 3H.

L. Andreoli, NR, et al, PRC 105 (2022) 1, 014002 
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Green’s Function Monte Carlo

lim
⌧!1

e�(H�E0)⌧ | T i = lim
⌧!1

X

n

cn e
�(En�E0)⌧ | ni = c0| 0i

GFMC uses a projection technique to enhance the true ground-state component of a starting 
wave function. 

Any trial wave function can be expanded in the complete set of eigenstates of the the Hamiltonian 
according to

H| ni = En| ni

The direct calculation of the imaginary-time propagator for strongly-interacting systems involves 
prohibitive difficulties

The imaginary-time evolution is broken into N small imaginary-time steps, and complete sets of 
states are inserted

<latexit sha1_base64="uP72hXQF7P3TVdK5Z9IwaH7oxaE="></latexit>

e�(H�E0)⌧ | V i =
Z

dR1 . . . dRN |RN ihRN |e�(H�E0)�⌧ |RN�1i . . . hR2|e�(H�E0)�⌧ |R1i V (R1)

Short Time Propagator

| V i =
X

n

cn| ni

J. Carlson , et al. Rev. Mod. Phys. 87 (2015) 1067 
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Phenomenological potential: av18 + IL7
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• Argonne v18 is a finite, local, configuration-space potential controlled by ~4300 np and pp 
scattering data below 350 MeV of the Nijmegen database

⇡
⇡

�

N N

N N

N N

N N

N N

N N

• Phenomenological three-nucleon interactions, like the Illinois 7, effectively include the lowest 
nucleon excitation, the ∆(1232) resonance, end other nuclear effects

�

⇡

⇡

NNN

N N N

⇡

⇡

NNN

N N N

vij =
18X

p=1

v
p(rij)O

p
ij
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The parameters of the AV18 + IL7 are fit to properties of exactly solvable light nuclear systems. 

Phenomenological potentials explicitly include the long-range one-pion exchange interaction 
and a set of intermediate- and short-range phenomenological terms
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Axial form factor determination
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• The axial form-factor has been fit to the dipole form

FA(q
2) =

gA
(1� q2/m2

A)
2

• Different values of mA from experiments
• mA =1.02 GeV q.e. scattering from deuterium
• mA =1.35 GeV @ MiniBooNE

• Alternative derivation based on z-expansion 
—model independent parametrization

A.S.Meyer et al, Phys.Rev.D 93 (2016) 11, 113015

• The intercept gA=-1.2723 is known from neutron 
β decay

T. KITAGAKI et al. 28

2.0

E
1.2-

"P~

CL+ 0.8-

ANL (Ref. 2)
BVL (Rei. a)
This exp.

milab 15-ft deuterium-filled bubble chamber to a wide-
band neutrino beam. A total of 362 quasielastic events
were found in the 16.7-m fiducial volume, from the
analysis of 96% of the total exposure. In the dipole
parametrization of the axial-vector form factor of the nu-
cleon, we measured the axial-vector mass to be
Mz ——1.05+o &6 GeV, which is consistent with the previous
low-energy measurements. A search for an energy depen-
dence of M~ showed no clear energy dependence„support-
ing the assumptions and the V—2 formulation used for
the quasielastic reaction in our energy range (5—200 GeV).
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FIG. 10. Quasielastic cross section o(v„n~p pl as a func-
tion of E„. The data points from this experiment and Ref. 4 are
calculated from Eq. (7) using the M~ values in Table I. The
curve is derived from Eq. (7) with M& ——1.05 GeV.
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where ni is the number of events in the ith bin, and µi is
the theory prediction (7) for the bin. Errors correspond
to changes of 1.0 in the �2LL function.

Because we do not use an unbinned likelihood fit, we
do not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting sta-
tistical uncertainties are approximately equal, and only
FNAL shows a discrepancy in central value. A similar
exercise was performed in Refs. [66, 74, 75], and similar
results were obtained. Having reproduced the original
analyses to the extent possible, we will proceed with the
updated constants as in the final column of Table I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor
shape represents an unquantified systematic error. We
now remove this assumption, enforcing only the known
analytic structure that the form factor inherits from
QCD. We investigate the constraints from deuterium
data in this more general framework. A similar analysis
may be performed using future lattice QCD calculations
in place of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FA(q
2) =

1

⇡

Z 1

tcut

dt0
ImFA(t0 + i0)

t0 � q2
, (11)

where tcut = 9m2
⇡ represents the leading three-pion

threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [31],

z(q2, tcut, t0) =

p
tcut � q2 �

p
tcut � t0p

tcut � q2 +
p
tcut � t0

, (12)

where t0, with �1 < t0 < tcut, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

kmaxX

k=0

akz(q
2)k , (13)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.

In any given experiment, the finite range of Q2 implies
a maximal range for |z| that is less than unity. We denote

TABLE III. Maximum value of |z| for di↵erent Q2 ranges
and choices of t0. t

optimal
0 is defined in Eq. (14).

Q2
max [GeV2] t0 |z|max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal
0 (3.0GeV2) = �0.57GeV2 0.35

by toptimal
0 (Q2

max) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max  q2  0. Explicitly,

toptimal
0 (Q2) = tcut(1�

p
1 +Q2

max/tcut) . (14)

Table III displays |z|max for several choices of Q2
max and

t0.
The choice of t0 can be optimized for various applica-

tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2, and therefore take as default
choice,

t̄0 = toptimal
0 (1GeV2) ⇡ �0.28GeV2 , (15)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III
shows that the form factor expressed as FA(z) becomes
approximately linear. For example, taking |z|max = 0.23
implies that quadratic, cubic, and quartic terms enter at
the level of ⇠ 5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative

QCD [76], FA ⇠ Q�4, implies the series of four sum
rules [35]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(16)

We enforce the sum rules (16) on the coe�cients, en-
suring that the form factor falls smoothly to zero at
large Q2. Together with the Q2 = 0 constraint, this
leaves Na = kmax � 4 free parameters in Eq. (13). From
Eq. (16), it can be shown [35] that the coe�cients behave
as ak ⇠ k�4 at large k. We remark that the dipole ansatz
(9) implies the coe�cient scaling law |ak| ⇠ k at large k,
in conflict with perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [31] motivates the
bound of

|ak/a0|  5. (17)

As noted above, from Eq. (16), the coe�cients behave as
ak ⇠ k�4 at large k. We invoke a fallo↵ of the coe�cients
at higher order in k,

|ak/a0|  25/k , k > 5. (18)
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FIG. 5. Same as Fig. 1, but with Q2  1GeV2. These fits
correspond to the Na = 4 z expansion in Table V.
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FIG. 6. Di↵erential scattering cross sections for neutrino-
deuteron scattering at 1GeV neutrino energy, employing dif-
ferent nuclear models. The solid (red) curve is the free-
neutron result. The dashed (blue) curve is obtained from
the free-neutron result using the model from Ref. [65], as in
the original deuterium analyses. The top dot-dashed (black)
curve is extracted at E⌫ = 1GeV from Ref. [70]. The charged
lepton mass is neglected in this plot.

ANL : [ā1, �2LL] =

(
[2.29(14), 30.5] (without)

[2.38(14), 26.3] (with)
,

FNAL : [ā1, �2LL] =

(
[1.88(25), 8.2] (without)

[1.88(25), 8.2] (with)
.

(29)

The parameter ⌘ takes on values of�1.9, �1.0, and +0.01
for data from ANL1982, BNL1981, and FNAL1983 re-
spectively; the negative values indicate a pull to decrease
the predicted cross section to match the data. In each
case there is only modest improvement in the fit quality,
and small impact on the form factor shape. Acceptance
corrections within the quoted range have only minor im-
pact.

C. Deuteron corrections

The analysis to this point, like the original analyses,
used the deuteron correction model R(Q2) of Singh [65].
This model yields a suppression of the cross section for
Q2 < 0.16 GeV2.11 An example of a modern calculation

11
A follow-up analysis [80] considers e↵ects of meson exchange cur-

rents and alternate deuteron wave functions, with a total result

very similar to Ref. [65].
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FIG. 7. Final form factor from Eqs. (31), (32) and (33).
Also shown is the dipole axial form factor with axial mass
mA = 1.014(14) GeV [55].

and the four-dimensional correlation matrix is

Cij =

0

BBB@

1 0.321 �0.677 0.761

0.321 1 �0.889 0.313

�0.677 �0.889 1 �0.689

0.761 0.313 �0.689 1

1

CCCA
. (36)

VII. APPLICATIONS

Having presented the axial form factor with errors and
correlations amongst the coe�cients, we may systemat-
ically compute derived observables that depend on this
function. We consider several applications of our results.

TABLE VII. Axial radius extracted using best values from
Table I, and default priors as discussed in the text. Note that
the joint fit is not an average, but a simultaneous fit to all of
the data sets.

Data set r2A [fm2] r2A [fm2] r2A [fm2]

(Na = 3) (Na = 4) (Na = 5)

BNL 1981 0.56(23) 0.52(25) 0.48(26)

ANL 1982 0.69(21) 0.63(23) 0.57(24)

FNAL 1983 0.63(34) 0.64(35) 0.64(35)

Joint Fit 0.54(20) 0.46(22) 0.39(23)

A. Axial radius

We begin with the axial radius, defined in Eq. (21).
While the radius by itself is not the only quantity of inter-
est to neutrino scattering observables, it is only through
the q2 ! 0 limit that a robust comparison can be made
to other processes such as pion electroproduction.
The form factor coe�cients and error matrix from the

�2 fit in Sec. VI determine the radius as

r2A = 0.46(22) fm2 . (37)

The constraint is much looser than would be obtained by
restricting to the dipole model, cf. Table IV.14 For com-
parison, let us consider the constraints from individual
experiments. Table VII gives results for Na = 3, 4, 5 free
parameters, with errors determined from the error ma-
trix in Eqs. (32) and (33). The results from individual
experiments are consistent with the joint fit. Note that
the joint fit is not simply the average of the individual
fits. This situation arises from a slight tension between
data and Gaussian coe�cient constraints (17) when com-
paring a single data set to the statistically more powerful
combined data.

B. Neutrino-nucleon quasielastic cross sections

Current and future neutrino oscillation experiments
will precisely measure neutrino mixing parameters, de-
termine the neutrino mass hierarchy, and search for pos-
sible CP violation and other new phenomena. This
program relies on accurate predictions, with quantifi-
able uncertainties, for neutrino interaction cross sections.
As the simplest examples, consider the charged-current
quasielastic cross section �(E⌫) for neutrino (antineu-
trino) scattering on an isolated neutron (proton).
The best fit cross section and uncertainty are shown

in Fig. 8, and compared to the prediction of dipole FA

with axial mass mA = 1.014(14) [55]. At representative

14
Extractions of the radius from electroproduction data are also

strongly influenced by the dipole assumption [31].
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FIG. 8. Free nucleon CCQE cross section computed
from Eqs. (31), (32) and (33), for neutrino-neutron (top)
and antineutrino-proton (bottom) scattering. Also shown
are results using dipole axial form factor with axial mass
mA = 1.014(14) GeV [55].

energies, the cross sections and uncertainties shown in
Fig. 8 are

�⌫n!µp(E⌫ = 1GeV) = 10.1(0.9)⇥ 10�39 cm2 ,

�⌫n!µp(E⌫ = 3GeV) = 9.6(0.9)⇥ 10�39 cm2 , (38)

for neutrinos and

�⌫̄p!µn(E⌫ = 1GeV) = 3.83(23)⇥ 10�39 cm2 ,

�⌫̄p!µn(E⌫ = 3GeV) = 6.47(47)⇥ 10�39 cm2 , (39)

for antineutrinos.

]2[GeV2Q
0 0.5 1 1.5 2

]2
/G

eV
2

 [c
m

2
/d

Q
σd

0

5

10

15

20

-3910×

GENIE RFG z-expansion

GENIE RFG dipole

MINERvA Data

FIG. 9. Cross section for charged-current quasielastic events
from the MINERvA experiment [56] as a function of re-
constructed Q2, compared with prediction using relativistic
Fermi gas (RFG) nuclear model with z expansion axial form
factor extracted from deuterium data. MINERvA data uses
an updated flux prediction from [82]. Also shown are results
using the same nuclear model but dipole form factor with
axial mass mA = 1.014(14) GeV [55].

C. Neutrino nucleus cross sections

Connecting nucleon-level information to experimen-
tally observed neutrino-nucleus scattering cross sections
requires data-driven modeling of nuclear e↵ects. Our
description of the axial form factor and uncertainty in
Eqs. (31), (32), and (33) can be readily implemented
in neutrino event generators that interface with nuclear
models.15

A multitude of studies and comparisons are possible.
As illustration, consider MINERvA quasielastic data on
carbon [56]. Figure 9 shows a comparison of the Q2 dis-
tribution of measured events with the predictions from
our FA(q2), using a relativistic Fermi gas nuclear model
in the default configuration of the GENIE v2.8 neutrino
event generator [6]. For comparison, we display the result
obtained using a dipole FA with axial mass central value
and error as quoted in the world average of Ref. [55]. The
central curves di↵er in their kinematic dependence, and
the dipole result severely underestimates the uncertainty
propagated from deuterium data.
The z expansion implementation within GENIE in-

15
The z expansion will be available in GENIE production release

v2.12.0. The code is currently available in the GENIE trunk

prior to its o�cial release. The module provides full generality

of the z expansion, and supports reweighting and error analysis

with correlated parameters.

• Sum rule can be enforced ensuring that the form factor falls smoothly to zero at large Q2

5

where ni is the number of events in the ith bin, and µi is
the theory prediction (7) for the bin. Errors correspond
to changes of 1.0 in the �2LL function.

Because we do not use an unbinned likelihood fit, we
do not expect precise agreement even when the original
choices of constants in Table I are used. Comparing the
first two columns of Table II, the size of the resulting sta-
tistical uncertainties are approximately equal, and only
FNAL shows a discrepancy in central value. A similar
exercise was performed in Refs. [66, 74, 75], and similar
results were obtained. Having reproduced the original
analyses to the extent possible, we will proceed with the
updated constants as in the final column of Table I.

III. z EXPANSION ANALYSIS

The dipole assumption (9) on the axial form factor
shape represents an unquantified systematic error. We
now remove this assumption, enforcing only the known
analytic structure that the form factor inherits from
QCD. We investigate the constraints from deuterium
data in this more general framework. A similar analysis
may be performed using future lattice QCD calculations
in place of deuterium data.

A. z expansion formalism

The axial form factor obeys the dispersion relation,

FA(q
2) =

1

⇡

Z 1

tcut

dt0
ImFA(t0 + i0)

t0 � q2
, (11)

where tcut = 9m2
⇡ represents the leading three-pion

threshold for states that can be produced by the axial
current. The presence of singularities along the posi-
tive real axis implies that a simple Taylor expansion of
the form factor in the variable q2 does not converge for
|q2| � 9m2

⇡ ⇡ 0.18GeV2. Consider the new variable ob-
tained by mapping the domain of analyticity onto the
unit circle [31],

z(q2, tcut, t0) =

p
tcut � q2 �

p
tcut � t0p

tcut � q2 +
p
tcut � t0

, (12)

where t0, with �1 < t0 < tcut, is an arbitrary number
that may be chosen for convenience. In terms of the new
variable we may write a convergent expansion,

FA(q
2) =

kmaxX

k=0

akz(q
2)k , (13)

where the expansion coe�cients ak are dimensionless
numbers encoding nucleon structure information.

In any given experiment, the finite range of Q2 implies
a maximal range for |z| that is less than unity. We denote

TABLE III. Maximum value of |z| for di↵erent Q2 ranges
and choices of t0. t

optimal
0 is defined in Eq. (14).

Q2
max [GeV2] t0 |z|max

1.0 0 0.44

3.0 0 0.62

1.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.23

3.0 toptimal
0 (1.0GeV2) = �0.28GeV2 0.45

3.0 toptimal
0 (3.0GeV2) = �0.57GeV2 0.35

by toptimal
0 (Q2

max) the choice which minimizes the maxi-
mum size of |z| in the range �Q2

max  q2  0. Explicitly,

toptimal
0 (Q2) = tcut(1�

p
1 +Q2

max/tcut) . (14)

Table III displays |z|max for several choices of Q2
max and

t0.
The choice of t0 can be optimized for various applica-

tions. We have in mind applications with data concen-
trated below Q2 = 1GeV2, and therefore take as default
choice,

t̄0 = toptimal
0 (1GeV2) ⇡ �0.28GeV2 , (15)

minimizing the number of parameters that are necessary
to describe data in this region. Inspection of Table III
shows that the form factor expressed as FA(z) becomes
approximately linear. For example, taking |z|max = 0.23
implies that quadratic, cubic, and quartic terms enter at
the level of ⇠ 5%, 1% and 0.3%.
The asymptotic scaling prediction from perturbative

QCD [76], FA ⇠ Q�4, implies the series of four sum
rules [35]

1X

k=n

k(k � 1) · · · (k � n+ 1)ak = 0 , n = 0, 1, 2, 3 .

(16)

We enforce the sum rules (16) on the coe�cients, en-
suring that the form factor falls smoothly to zero at
large Q2. Together with the Q2 = 0 constraint, this
leaves Na = kmax � 4 free parameters in Eq. (13). From
Eq. (16), it can be shown [35] that the coe�cients behave
as ak ⇠ k�4 at large k. We remark that the dipole ansatz
(9) implies the coe�cient scaling law |ak| ⇠ k at large k,
in conflict with perturbative QCD.
In addition to the sum rules, an examination of explicit

spectral functions and scattering data [31] motivates the
bound of

|ak/a0|  5. (17)

As noted above, from Eq. (16), the coe�cients behave as
ak ⇠ k�4 at large k. We invoke a fallo↵ of the coe�cients
at higher order in k,

|ak/a0|  25/k , k > 5. (18)

Fit deuteron data replacing dipole axial form factor with z-expansion, enforce the sum rule constraints 


A.S.Meyer, Phys.Rev.D 93 (2016) 11, 113015

mailto:nrocco@fnal.gov

