Final state radiation (FSR) from high and ultrahigh energy neutrino interactions

Bei Zhou

Research Associate, Theoretical Physics Department, Fermi National Accelerator Laboratory Associate Fellow, Kavli Institute for Cosmological Physics, University of Chicago

Based on arXiv: 2403.07984 Ryan Plestid (Caltech), Bei Zhou (Fermilab & KICP)

More than half a century after the establishment of the quantum electrodynamics, it still has a radiative correction of as large as 25% to be studied.

And it has also been overlooked by current experiments on HE and UHE neutrinos.

Why do we study HE&UHE neutrinos

- Astrophysics (highlighted by astro2020): Origin of HE/UHE astrophysical neutrinos
	- Sources of HE/UHE cosmic rays (> 60-year problem)
	- Cosmic particle acceleration, propagation
	- Cosmic gamma ray sources, hadronic vs leptonic mechanism
	- Dense astrophysical environments
	- Essential for multi-messenger astrophysics

- Particle physics (highlighted by P5 report):
	- Neutrino interactions in the SM (Deep-inelastic scattering, W-boson production, Glashow resonance, final state radiation, etc.)
	- Measure neutrino mixing parameters
	- Test BSM (ν portal to DM, new ν interactions, sterile ν, magnetic moment, etc.)

Why do we study HE&UHE neutrinos

- Astrophysics (highlighted by astro2020): Origin of HE/UHE astrophysical neutrinos
	- Sources of HE/UHE cosmic rays (> 60-year problem)
	- Cosmic particle acceleration, propagation
	- Cosmic gamma ray sources, hadronic vs leptonic mechanism
	- Dense astrophysical environments
	- Essential for multi-messenger astrophysics

- Particle physics (highlighted by P5 report):
	- Neutrino interactions in the SM (Deep-inelastic scattering, W-boson production, Glashow resonance, final state radiation, etc.)
	- Measure neutrino mixing parameters
	- Test BSM (ν portal to DM, new ν interactions, sterile ν, magnetic moment, etc.)

Lots of HE/UHE nu telescopes running or to build

HE neutrino telescopes (~100 GeV--100 PeV)

Laboratory HE nu experiments (~10 GeV--5 TeV)

UHE neutrino telescopes (>~100 PeV)

2203.08096, Ackermann,, BZ (Snowmass) for a complete list

Increasing statistics requires studies of HE/UHE nu interactions

- Neutrino interactions are the cornerstone of all kinds of neutrino-related measurements
	- Astrophysics: energy spectrum, flavor composition, arrival direction, etc.
	- Particle physics: mixing parameters; all BSM studies contingent on well-understood SM interactions
- Help us to find new event classes: useful for both astrophysics and particle physics studies
	- E.g., dimuons for high-energy neutrino detection (*2110.02974 BZ, Beacom*).
- Neutrino(-nucleus) interaction theory is interesting (and sometimes difficult):
	- Neutrino only has weak interactions, but neutrino interaction studies involves much more
		- Weak, electroweak
		- QED (e.g., final state ration, W-boson and trident production)
		- Strong interactions: QCD (parton distribution functions), nuclear model, resonance prod., etc.
		- (Also detection physics because you need to detect them.)

Overview of HE&UHE neutrino interactions

Deep inelastic scattering (DIS) dominates

(as good as ~1% precision)

Gandhi+ 96&97, Connolly+ 11, Cooper-Sarkar+ 11, Bertone+ 16, etc. Most recent: Xie, et al. 2303.13607; Weigel, et al 2408.05866

W-boson production (WBP) is subdominant

(Seckel 1997, Alikhanov 2015, BZ, Beacom, 1910.08090) Bei Zhou (Fermilab & KICP) NuFact 2024 (09/20/2024) 7

Glashow resonance for $\bar{\nu}_e$

Glashow 1960 IceCube 2021

Cross sections

(BZ, Beacom, 1910.10720)

Our work: final state radiation (FSR) on top of neutrino CC DIS

Effect on total xsec: small (~1%, c.f.).

Effects on the differential xsec: big, due to the kinematic logs.

 \rightarrow So, it affects observation if charged lepton and shower are separate.

FSR impacts the energies of the final states from HE/UHE interactions

Correction increases with energy, up to 25%(!)

Correction on $vy > VI$, cuz m_µ < m_T

Correction on shower > charged lepton

Correction on shower further enhanced by 10—20% due to light yields from EM shower > hadronic shower

Difference between nu and nubar

(Plestid, BZ, 2303.08984)

Photon takes energy from the charged lepton to the shower

Final state radiation impacts the inelasticity (y) measurements

(Plestid, BZ, 2303.08984)

Correction increases with energy, up to 25%(!)

Final state radiation impacts high-energy (~100 GeV—100 PeV) neutrino observations

Measurements based on inelasticity measurement Theorem Cassetter Controller Measurements

1. Neutrino-antineutrino flux ratio (5% shift)

- 2. Neutrino mixing parameters
	- Inel. dist. helps to separate nu/nubar
- 3. Charm production from nu interactions
	- CCDIS /w charm production has higher inelasticity
- 1. Throughgoing muons
	- Without FSR, underestimate parent Ev $({\sim}5\%)$
- 2. Double bang signature from tau neutrinos
	- Inference of the parent neutrino energy
	- Reduce the detectability

UHE nu observation: two basic kinds of detectors

In-ice radio detectors (all flavors; hard to distinguish flavors)

Air shower detectors (main for ντ)

1912.00987 ARA 2203.08096, Ackermann,, BZ (Snowmass WP) collaboration

FSR impacts UHE nu observations: in-ice radio detectors (e.g., ANITA, PUEO)

For CCDIS, FSR enhances the overall detectable (shower) energy by as much as \simeq 20% , which effectively lowers the energy thresholds.

ντ CC, big, up to ≃20%

νμ CC, mild

νe CC, negligible

Final state radiation impacts ultrahigh-energy (>~100 PeV) neutrino observations

1) If charged lepton barely detectable, FSR enhances detectable (shower) energy by \sim 20%.

2) A way to measure $v\mu/v\tau$, FSR reduces the detectability (~5%)

3) A way to measure νe (using LPM effect);

Bkgd rate: 0% (w/o FSR) VS ~30% (w/ FSR)

Bei Zhou (Fermilab & KICP) NuFact 2024 (09/20/2024) 14

In-ice radio detectors (e.g., ANITA, PUEO) Air shower detectors (main for ντ, e.g., POEMMA)

1) Earth emergent τ; w/o FSR underestimates parent Eν by $~5\%$

2) nutau regeneration, 5%*N

FSR impacts on the neutrino flux and spectrum measurement

Flux normalization:

Any bias on the total detectable energy due to FSR in the previous slides will be amplified when measuring the neutrino flux normalization due to the steeply falling spectrum

 $(1-\delta_E)^{-\Gamma} \simeq 1-\Gamma^*\delta_E$

For example, *Γ*=3, δ _{*E*}=5%, the bias is 15% *Γ=3, δE=20% (UHE ντ CCDIS), the bias is 60%*

Spectral shape:

FSR's effect is energy dependent, so it affects the spectrum shape measurement.

Collider Neutrinos: FSR's impacts

Example: measuring parton distribution function (PDF) using data of FASERν (running) and future FASERν2

FASERν (running) will have ~2×10^4 neutrino CCDIS events FASERv2 (proposed) will have ~10^6. Enough data to perform PDF(x, Q^2) measurements

$$
\text{Without FSR: } \begin{aligned} x_{(0)} &= \frac{Q_{(0)}^2}{2m_N E_X}; \quad Q_{(0)}^2 = 4E_\nu E_\ell \sin^2\left(\frac{\theta_\ell}{2}\right) \end{aligned}
$$

With FSR:
$$
\frac{\Delta Q^2}{Q_{(0)}^2} \simeq -\frac{E_\gamma}{E_\ell}
$$
 A few percent but large statistics

$$
\frac{\Delta x}{x_{(0)}} \simeq -\frac{E_\gamma}{E_X} - \frac{E_\gamma}{E_\ell} \sim 10\%
$$

Accelerator neutrinos?

Thanks for your attention!

Calculation

DIS cross section

$$
\frac{d^2 \sigma_{\nu, \overline{\nu}}^{(0)}}{dxdy} = \frac{G_F M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \times \left[y^2 F_1 + (1 - y) F_2 \pm xy (1 - y/2) F_3 \right]
$$

from Xie et al. 2303.13607, CTEQ collaboration

Collinear log

Splitting function

$$
P_{\ell \to \ell \gamma}(z) = \frac{\alpha}{2\pi} \log \left(\frac{s}{m_{\ell}^2} \right) \left[\frac{(1+z^2)}{[1-z]_+} + \frac{3}{2} \delta(1-z) \right],\tag{6}
$$

$$
\frac{d\sigma^{(1)}}{dE_{\ell}} = \frac{\alpha}{2\pi} \int dy \int dz \frac{d\sigma^{(0)}}{dy} \delta(E_{\ell} - (1 - y)zE_{\nu})
$$

$$
\times \log \left(\frac{s}{m_{\ell}^2}\right) \left[\frac{1 + z^2}{[1 - z]_+} + \frac{3}{2}\delta(1 - z)\right].
$$
 (7)

(Plestid, BZ, 2303.08984)

A rough estimate using Sudakov form factor

Collinear log Soft log $\left|F_S(s,E_{\rm min})\sim \exp\left|-\frac{\alpha}{2\pi}\log\left(\frac{s}{m_e^2}\right)\log\left(\frac{E_{\ell}^2}{E_{\rm min}^2}\right)\right|\right|$

which gives the probability to *not* radiate any photons above E_{\min} in a collision with center-of-mass energy \sqrt{s} and final-state charged-lepton energy E_{ℓ} . Taking ℓ as the muon (μ) , $E_{\min} \simeq \frac{1}{10} E_{\mu}$, and $s \simeq 2E_{\nu} m_N$ (m_N is the nucleon mass) with $E_{\nu} = 10$ TeV, we find $F_S \sim 0.9$. This implies that roughly 10% of all events will contain some prompt real and energetic photon radiation.

Why do we study high-energy neutrinos: BSM

Why HE neutrinos special for BSM:

- High energy, inaccessible by lab ν experiments
- Known direction
- Travel cosmic distance, small effects accumulates to big effects
- Extremely high column density (through Earth)

2203.08096, Ackermann,, BZ (Snowmass WP); 1907.08690 Argüelles et al. Bei Zhou (Fermilab & KICP) NuFact 2024 (09/20/2024) 21

HE/UHE neutrino interaction studies so far, not enough

Most recent: Xie, et al. 2303.13607

W-boson production is subdominant

Seckel 1997; Alikhanov 2015; BZ, Beacom 1910.08090, 1910.10720

Glashow resonance important for $\bar{\nu}_e$

Glashow 1960, IceCube 2021

Bei Zhou (Fermilab & KICP) NuFact 2024 (09/20/2024) 22

Cross sections

Photons from other parts of the diagram: not important

Photon from W boson: suppressed by W mass

Photon from quarks:

- 1) hard to distinguish from the hadronic cascade
- 2) Eγ small as quark energy << lepton energy

Multi-photon emission: higher order, small

Illustration of FSR impacts on DIS differential xsec

$$
y_{\text{QCD}} \equiv \frac{E_X}{E_\nu} = \frac{E_\nu - E_\ell}{E_\nu}
$$

FSR impacts on the inelasticity

Theoretical definition:

$$
y_{\text{QCD}} \equiv \frac{E_X}{E_\nu} = \frac{E_\nu - E_\ell}{E_\nu}
$$

FSR impacts HE nu observation: nu mixing parameters & charm production

Inelasticity measurements help to separate nu and nubar, which helps with measuring neutrino mass hierarchy and CP violation. The sensitivity can be increased by ≃30%. (*1303.0758, 1312.0457, 2402.13308*)

And FSR will affect the measurements

Neutrino mixing and the contract of the Charm production

Neutrino DIS with charm production has a larger inelasticity than those without…

FSR impacts HE nu observation: throughgoing muons & *ν^τ* double bang

Throughgoing muon

ντ induced double bang

Not including FSR underestimates the parent neutrino energy

FSR 1) distort the energy balance the two bangs 2) reduce the detectability of the double bang signature.

FSR impacts UHE nu observation: in-ice radio detectors

FSR impacts UHE nu observation: in-ice radio detectors

A way to measure electron neutrinos (using LPM effect)

Background could be from muon/tau neutrino CC interactions. Without FSR, the paper estimates that bkgd rate is negligible With FSR, we estimate that bkgd rate is ~30% of signal rate

2402.02432 Coleman et al

FSR impacts UHE nu observation: in-ice radio detectors

If the charged from CC interaction barely deposit energies to the antenna, then FSR enhances the detectable (shower) energy by as much as 25%!

2402.02432 Coleman et al

FSR impacts UHE nu observation: air shower detectors for ντ

(Plestid, BZ, 2303.08984)

2203.08096, Ackermann,, BZ (Snowmass WP)

