Latest cross-section results from the T2K experiment

Laura Munteanu (CERN) On behalf of the T2K Collaboration NuFACT 2024, Argonne National Laboratory 18 September 2024

The T2K Experiment

Far detector: Super-Kamiokande

Near detector complex

The T2K Experiment

Far detector: Super-Kamiokande

Near detector complex

The T2K near detector at 280 m: ND280

The T2K near detector at 280 m: ND280

18.09.2024

18.09.2024

Laura Munteanu - NuFACT 2024 - Argonne National Laboratory

Cross-section extraction philosophy

Cross-section extraction philosophy

18.09.2024

Laura Munteanu - NuFACT 2024 - Argonne National Laboratory

• Covered many different channels

- Covered many different channels
- Particular focus on CC0π processes (main signal for oscillations)

- Covered many different channels
- Particular focus on **CC0π processes** (main signal for oscillations)
- Many joint measurements

18.09.2024

- Covered many different channels
- Particular focus on **CC0π processes** (main signal for oscillations)
- Many joint measurements

Latest results: focus of this talk

Latest results

- Joint on-/off-axis ν_{μ} CC0 π measurement (<u>Phys. Rev. D 108, 112009</u>)
- Measurement of CC coherent pion production (Phys. Rev. D 108, 092009)
- CC0 π on CH & water using WAGASCI-BabyMIND
- Measurement of NC1 π^+ cross section
- First measurement of v_e CC1 π^+ cross section on C _

_____Approved results, publication coming soon

18.09.2024

Laura Munteanu - NuFACT 2024 - Argonne National Laboratory

Joint on-/off-axis v_{μ} CC0 π measurement

Signal definition: 1 μ^- track with 0 pions in final state

ND280:

- Any number of hadrons
- Any values of p_{μ} and $\cos \theta_{\mu}$ (but low efficiency for $\cos \theta_{\mu} < 0.2$)

INGRID:

- Either 0 or exactly 1 proton-like track
- $p_{\mu} > 0.35 \text{ GeV}$
- $\cos\theta_{\mu} > 0.5$

18.09.2024

Laura Munteanu - NuFACT 2024 - Argonne National Laboratory

Joint on-/off-axis v_{μ} CC0 π measurement

Results reported as 2D differential cross section in **70 bins** in muon kinematics $(p_{\mu}, \cos\theta_{\mu})$

• ND280: 58 bins

• INGRID: 12 bins

χ^2 values		
ND280	INGRID	Joint
136.34	18.21	158.71
106.46	11.46	116.26
194.88	14.36	209.18
158.71	9.98	170.93
122.74	15.68	137.02
125.88	12.75	141.04
121.57	11.13	135.38
138.86	12.46	155.68
141.40	12.80	156.05
125.50	14.45	135.69
	ND280 136.34 106.46 194.88 158.71 122.74 125.88 121.57 138.86 141.40 125.50	χ^2 valuesND280INGRID136.3418.21106.4611.46194.8814.36158.719.98122.7415.68125.8812.75121.5711.13138.8612.46141.4012.80125.5014.45

All tested models are insufficient to describe the joint measurement

Results consistent with previous T2K measurements

- Generators struggle to describe forwardgoing, mid- to low-momentum muons
- Struggle to describe ND280 measurements but not INGRID

Issues with RPA/energy dependence?

A PRISM-like analysis?

The joint INGRID+ND280 analysis is a PRISM-like analysis but using only two fluxes

Towards a PRISM-like analysis – WAGASCI-BabyMIND

The joint INGRID+ND280 analysis is a PRISM-like analysis but using only two fluxes Goal: add a third point – WAGASCI

CCO π measurement on CH & H₂O with WAGASCI ~few thousands of events

H₂O target

CH target

18.09.2024

Approved result – publication in preparation

First measurement of v_e CC1 π^+ cross section on C

 $\frac{d\sigma}{dp_{\pi}} \begin{bmatrix} 10^{-39} \text{ cm}^2 \text{ nucleon}^{-1} \text{ GeV}^{-1} \end{bmatrix}$ 10

3D measurement in $(p_e, cos\theta_e, p_{\pi^+})$ projected into 1D p_{π^+}

 $p_e > 350 \,{\rm MeV}$ $p_{\pi^+} < 1.5 \text{ GeV}$

Predictions overestimate the measurement by ~ 2σ but very statistically limited

18.09.2024

Laura Munteanu - NuFACT 2024 - Argonne National Laboratory

Approved result – publication in preparation

Measurement of NC1 π^+ cross section

First dedicated measurement in >40 years Background process at oscillation maximum

Challenging topology due to OOFV backgrounds and mis-PID (\sim 40% purity and \sim 15% efficiency) Less than 1% of events at ND280 \rightarrow \sim 500 selected events

 $\begin{array}{l} 1~{\rm GeV} > p_{\pi^+} > 0.2~{\rm MeV} \\ {\rm cos} \theta_{\pi^+} > 0.5 \end{array}$

None of the tested models are excluded

Measurement of v_{μ} and \bar{v}_{μ} CC coherent pion production

Poorly understood process which can be a background for oscillation analyses in Cherenkov detectors or exotic searches

on ¹²C (2022)

- No nuclear fragmentation
- Require low |t|
- And low energy deposition around vertex
- Improvement of uncertainty w.r.t. previous v_{μ} result (Phys. Rev. Lett. 117, 192501) by a factor of 2
- Compatible with Rein-Sehgal and Berger Sehgal models

Measurement of v_{μ} and \bar{v}_{μ} CC coherent pion production

Poorly understood process which can be a background for oscillation analyses in Cherenkov detectors or exotic searches

And low energy deposition around vertex

- First T2K $\overline{\nu}_{\mu}$ measurement
- Compatible with Rein-Sehgal and Berger Sehgal models

Coming soon

TKI with increased stat. on C & O

Joint CC0 π +CC1 π measurement on CH

T2K Work In Progress

1400

p^{TPC}(MeV/c)

1000

18.09.2024

Laura Munteanu - NuFACT 2024 - Argonne National Laboratory

dE/dx (a.u.)

Measured 1000 800

Including Michel electrons

1600 1400 1200

600

400

Capabilities of the ND280 Upgrade

- Full 4π angular coverage (same as SK)
- Low momentum thresholds for detecting protons
 - Can realiably measure full final state in neutrino interactions!
- Capability to measure (not just tag!) neutrons
 - Unique capability of scintillator technology

Laura Munteanu - NuFACT 2024 - Argonne National Laboratory

The next generation of T2K cross section measurements

- Finer measurements (esp. at high muon angles)
- More exclusive measurements (e.g. TKI & beyond)
- Expoiting calorimetry in the SuperFGD
- Measuring neutrons (& interactions off free protons!)

Laura Munteanu - NuFACT 2024 - Argonne National Laboratory

Summary

- T2K has a prolific cross-section program (>30 publications)
- Focus is on providing robust measurements of processes important for oscillation analyses
- Latest results include joint measurements and new channels
- Last generation of pre-upgrade measurements will benefit from 10+ years of cross-section extraction experience
- Newly installed ND280 Upgrade detector will provide some of the most precise measurements to date

Thank you for your attention!

Back-Up

18.09.2024

Laura Munteanu - NuFACT 2024 - Argonne National Laboratory

$$N_{obs}^{FD} = \Phi^{FD}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{FD} \otimes P_{\nu_{\alpha \to \nu_{\beta}}}(E_{\nu})$$

$$N_{obs}^{FD} = \Phi^{FD}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{FD} \otimes P_{\nu_{\alpha \to \nu_{\beta}}}(E_{\nu})$$

Neutrino flux
"What was sent"

18.09.2024

- The observed event rate at the FD is the result of the convolution of multiple effects $N_{obs}^{FD} = \Phi^{FD}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{FD} \otimes P_{\nu_{\alpha \to \nu_{\beta}}}(E_{\nu})$
- The observed rate at the ND is identical in form, up to the last term

 $N_{obs}^{ND} = \Phi^{ND}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{ND}$

• The observed event rate at the FD is the result of the convolution of multiple effects $N^{FD} = \Phi^{FD}(\Gamma \setminus \Omega) = (\Gamma \setminus \Omega) + FD \cap \Omega$

$$N_{obs}^{FD} = \Phi^{FD}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{FD} \otimes P_{\nu_{\alpha \to \nu_{\beta}}}(E_{\nu})$$

The observed rate at the ND is identical in form, up to the last term

 $N_{obs}^{ND} = \Phi^{ND}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{ND}$

- The near detector(s) play a key role in constraining systematic uncertainties for oscillation parameter measurements
 - But it's not a trivial task due to experiment resolution

- The observed event rate at the FD is the result of the convolution of multiple effects $N^{FD} = \Phi^{FD}(E_{-}) \otimes \sigma^{FD} \otimes D_{-} = (E_{-})$
 - $N_{obs}^{FD} = \Phi^{FD}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{FD} \otimes P_{\nu_{\alpha \to \nu_{\beta}}}(E_{\nu})$
- The observed rate at the ND is identical in form, up to the last term $N_{obs}^{ND} = \Phi^{ND}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{ND}$

 The near detector(s) play a key role in constraining systematic uncertainties for oscillation parameter measurements

- But it's not a trivial task due to experiment resolution
- $\Phi^{ND} \neq \Phi^{FD}$ (even without oscillations) so relies on flux models to extrapolate

• The observed event rate at the FD is the result of the convolution of multiple effects

$$N_{obs}^{FD} = \Phi^{FD}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{FD} \otimes P_{\nu_{\alpha \to \nu_{\beta}}}(E_{\nu})$$

• The observed rate at the ND is identical in form, up to the last term

 $N_{obs}^{ND} = \Phi^{ND}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{ND}$

- The near detector(s) play a key role in constraining systematic uncertainties for oscillation parameter measurements
 - But it's not a trivial task due to experiment resolution
- $\Phi^{ND} \neq \Phi^{FD}$ (even without oscillations) so relies on flux models to extrapolate
- Detector efficiency needs to be well understood

• The observed event rate at the FD is the result of the convolution of multiple effects

$$N_{obs}^{FD} = \Phi^{FD}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{FD} \otimes P_{\nu_{\alpha \to \nu_{\beta}}}(E_{\nu})$$

• The observed rate at the ND is identical in form, up to the last term

 $N_{obs}^{ND} = \Phi^{ND}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{ND}$

- The near detector(s) play a key role in constraining systematic uncertainties for oscillation parameter measurements
 - But it's not a trivial task due to experiment resolution
- $\Phi^{ND} \neq \Phi^{FD}$ (even without oscillations) so relies on flux models to extrapolate
- Detector efficiency needs to be well understood
- $\sigma(E_{\nu})$ has an intrinsic dependence on E_{ν}

$$N_{obs}^{FD} = \Phi^{FD}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{FD} \otimes P_{\nu_{\alpha \to \nu_{\beta}}}(E_{\nu})$$

- The observed rate at the ND is identical in form, up to the last term $N_{obs}^{ND} = \Phi^{ND}(E_{\nu}) \otimes \sigma(E_{\nu}) \otimes \epsilon^{ND}$
- The near detector(s) play a key role in constraining systematic uncertainties for oscillation parameter measurements
 - But it's not a trivial task due to experiment resolution
- $\Phi^{ND} \neq \Phi^{FD}$ (even without oscillations) so relies on flux models to extrapolate
- Detector efficiency needs to be well understood
- $\sigma(E_{\nu})$ has an intrinsic dependence on E_{ν}
 - ...and we do not know enough about neutrino interactions with matter in general!