

Scattering and Neutrino Detector at the LHC

Recent Results from the SND@LHC experiment

The 25th International Workshop on Neutrinos from Accelerators (NuFact 2024)

16th – 21st Sept, 2024 | Argonne National Laboratory

Riddhi Biswas [riddhi.biswas@cern.ch] On behalf of the SND@LHC Collaboration

Neutrinos at the LHC

Existing neutrino cross-section measurements

OPEN ACCESS			
IOP Publishing	Journal of Physics G: Nuclear and Particle P		
J. Phys. G: Nucl. Part. Phys. 47 (2020) 125004 (18pp)	https://doi.org/10.1088/1361-6471/aba		

Further studies on the physics potential of an experiment using LHC neutrinos OPEN ACCESS

bue	46 (2010) 115009 (10mm)	

ttps://doi.org/10.1088/1361-6471/ab3

Physics potential of an experiment using LHC neutrinos

- Exploring a **neutrino physics program** at the LHC in discussion since 1980s
- LHC *pp* collisions ($pp \rightarrow \nu_X X$) \rightarrow large neutrino flux
 - in the **forward region**
 - **unexplored energy range** $[10^2 10^3] (\sigma_v \propto E_v)$
- **Small scale experiments** near the LHC IP in the forward region can observe these neutrinos
- In LHC Run 3 two experiments currently running: FASERv and SND@LHC

Scattering and Neutrino Detector at the LH

March 2021

IP₂

(ALICE)

CERN approves new LHC experiment

100 m

LHC

11-18

na<u>g</u>nets

rock

TI-18 location:

- Reusing old LEP transfer
 tunnel, **480 m away from IP1.**
- **100 m of rock** between detector and IP1 – shielding from collision debris
- Downstream of dipole magnets – deflect charged particles

Off-axis position:

- Rapidity range: $7.2 < \eta < 8.4$
- Enhances *v* flux from **charm** parents.
- Complementarity with
 FASERv, located on-axis in symmetric tunnel (TI-12).

NuFACT 2024, 18/09/2024

IP1

(ATLAS)

SND@LHC Physics Goals

Neutrino interactions

- Measure *v* **interactions** in unexplored ~TeV energy range.
- Large yield of ν_{τ} will likely double existing data.
 - About 20 events observed by DONuT and OPERA.

QCD

• Decays of **charm** hadrons contribute significantly to the neutrino flux in SND@LHC.

 \Rightarrow Measure **forward charm production** with ν_{es} .

 \Rightarrow Constrain gluon PDF at very small x.

Flavour

• Detection of all **three types of neutrinos** allows for tests of **lepton flavour universality**.

 \Rightarrow Charm parentage leads to partial cancelation of the flux uncertainties

Beyond the Standard Model

• Search for **new**, feebly interacting, **particles decaying** within the detector or **scattering** off the target.

250 fb⁻¹

	Neutrinos in	acceptance	CC neutrino interactions		NC neutrino interactions	
Flavour	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield
$ u_{\mu}$	130	$3.0 imes 10^{12}$	452	910	480	270
$ar{ u}_{\mu}$	133	$2.6 imes 10^{12}$	485	360	480	140
ν_e	339	$3.4 imes 10^{11}$	760	250	720	80
$\bar{ u}_e$	363	$3.8 imes 10^{11}$	680	140	720	50
$ u_{ au}$	415	$2.4 imes 10^{10}$	740	20	740	10
$ar{ u}_{ au}$	380	2.7×10^{10}	740	10	740	5
TOT		$4.0 imes 10^{12}$		1690		555

Detector Layout

Veto system

2 (2022 – 2023) / 3 (2024 -) 1 cm thick scintillator planes. - Tag penetrating muons

Target, Vertex Detector & ECal

830 kg tungsten target.
Five walls x 60 emulsion layers – detecting neutrino interaction
+ Five scintillating fibre stations - timing information and energy measurement

Muon system & HCal

Eight 20 cm Fe blocks + scintillator planes. - fast time resolution and energy measurement

Last 3 planes have finer granularity - to track muons.

Goal:

- identification of neutrino flavours
- detection of feebly interacting particles
 Solution: Hybrid detector

Riddhi Biswas | NTU, Singapore

Hadron calorimeter test beam

- Very successful test beam data taking campaign in August 2023 at CERN SPS region
- Exact replica of the hadron calorimeter.
- Downsized mockup of the target.
 - Narrow beam spot.
- Calibrated calorimeter response.
 - Confirmed expected performance.

pp collision data

- **68.6 fb⁻¹** of proton-proton collisions **recorded** by the electronic detectors in **2022-2023**
 - 97% detector uptime.
 - Five emulsion target replacements
 - Keep track density < 4x10⁵ tracks / cm²
 - Limit the exposure to 20 fb⁻¹.
- Unexpected increase in the muon flux in **2024**
 - New strategy for the emulsion target replacement:
 - Instrument only the lower half target with emulsions
 - Exposure limited to 12 fb⁻¹
 - Keep 65% of events
 - **79.9 fb⁻¹** of proton-proton collisions recorded by the electronic detectors up to now
 - Seven emulsion target replacements performed, nine expected

Muon Flux Measurement

Published: Eur. Phys. J. C (2024) 84: 90

- **Backgrounds** to neutrino signals in SND@LHC are mainly due **to muon interactions** in the tunnel walls
- Precise measurements of the muon flux allow for validating and constraining our background model.

• Measurements with the SciFi tracker, downstream muon system and emulsion detectors give **consistent results**.

Riddhi Biswas | NTU, Singapore

Muon Neutrino Analysis - Update

Phys. Rev. Lett. 131, 031802: 8 muon neutrino candidates in the 2022 data, with a significance of 6.8 σ .

New this year

Updated analysis with 2023 data and extended fiducial volume.

Event selection Fiducial volume

- Reject events in first wall.
 - Previously used only walls 3 and 4.
- Reject side-entering backgrounds.
- Signal acceptance: 18%
 - **Up from 7.5%.**

Muon neutrino identification

- Large scintillating fibre detector activity.
- Large HCal activity.
- One muon track associated to the vertex.
- Signal selection efficiency: 35%

Updated Muon Neutrino Results

Number of events expected in 68.6 fb⁻¹

- Signal: 19 ± 4 (syst) ± 4 (stat)
- Neutral hadrons: 0.25 ± 0.06

Number of events observed:

32

Shower Density

- Signal selection based on topological and calorimetric information
- **Density-weighted Sci-Fi hits** promising variable to characterize showers
 - EM showers (for identifying v_e CC) would be more dense than hadronic showers
- Defined as the summation of the weights of the hits.
 - Weight of a hit consider the position of the hit and count the number of hits lying within 1cm distance from this hit
- Good agreement in data and MC in test-beam data

Data MC agreement in test beam data

Riddhi Biswas | NTU, Singapore

3 Search for Shower-like (0μ) Neutrino Events

Signal: ν_e CC and NC interactions

Fiducial volume

- No hits in the veto detector.
- Reject side-entering backgrounds.
- Signal acceptance: 12%

$o\mu$ neutrino event identification

- Large scintillating fibre detector activity.
- Large HCal activity.
- No hits in last two muon system planes.
 - No reconstructable muon.
- Density-weighted number of hits in most active station > 11x10³.
 - Optimized for maximum expected significance
- Signal selection efficiency: 42%

Observation of Oµ Events in SND@LHC

Neutral hadron background

- Define background-dominated control region.
- Scale the background prediction to the number of observed events in the control region.
 - Observed neutral hadron background is 1/3 of the predicted value.
- Events expected in signal region: 0.01

Neutrino background

- Muon neutrino CC interactions are the dominant background, with **0.12** expected events.
- Tau neutrino CC 1 μ interactions expected: **0.002**

$o\mu$ observation significance

- Total expected background: 0.13 ± 0.11 events
- Expected signal: 4.7 events
- Expected significance: 4.9 σ

Number of events observed: 6 Observation significance: 5.8 σ

Paper in preparation

Riddhi Biswas | NTU, Singapore

oµ Neutrino Candidates

Riddhi Biswas | NTU, Singapore

S

Search for v_e CC interactions in the Emulsion data

Strategy

- Identify regions of high track density in the emulsions.
- Consistent with the expectation of electromagnetic shower development.
- Search for neutral vertices associated to identified showers.

Status

- Electromagnetic shower patterns identified.
- Vertex association ongoing.

Z slices showing EM Shower development in the emulsion

Riddhi Biswas | NTU, Singapore

Search for Muon Trident Events

In Upstream rock

Interacting with the detector

600 z [cm]

zoom into target:

We observe events with 3 tracks compatible with muon tridents Analysis Ongoing

SND@LHC Experiment, CERN

Run / Event: 5099 / 10783407 Time (GMT): 2022-10-23 01:52:32

5/

Detector upgrades in 2024

Veto detector upgrade

- Installed a 3rd plane veto plane in the detector.
 - Additional redundancy to mitigate the impact of detector inefficiency.
- Floor was excavated so that veto system could be lowered.
 - Better coverage of the target.
- This upgrade will allow for a significant **increase of the fiducial volume used in neutrino data analyses.**

New muon telescope

- Technology demonstrator: sealed resistive-plate chambers.
- Will allow for measuring the muon flux outside of the SND@LHC acceptance.
 - Further validation of the background model.

Upgrades beyond Run 3

Run 4 (High Luminosity LHC era)

- Electronic **vertex detector**.
 - Si options under consideration.
- Iron-core **muon spectrometer**.
- Improved **hadron calorimeter** and **timing** detectors.

AdvSND Simulation Event: 4

Summary

The SND@LHC experiment is measuring unexplored high-energy neutrinos produced in the forward region of the LHC proton-proton collisions in the LHC Run 3.

Current Status:

- A successful test beam campaign in August 2023 aided in calibration of the hadronic calorimeter to the expected response.
- The muon flux reaching the detector was measured to validate the background model.
- The **muon neutrino** analysis was updated with an extended fiducial volume and 2023 data.
 - The newly observed 32 events agreed to the signal predictions (paper in preparation)
- Shower-like ($o\mu$) neutrino events were observed with a significance of 5.8 σ . (paper in preparation)
- The search for **electron neutrino** interactions in the **emulsion data** is in progress.
- Ongoing searches for exotic events like muon tridents.
- The veto system is upgraded, a muon telescope is installed and there are plans for the HL-LHC era.

Thank you

Back up slides

Two complementary LHC v experiments

_		SND@LHC		FASER		
	Location	Off-axis : 7.2 < η < 8.4 Enhances charm parentage		On-axis : η > 9.2 Enhances statistics		
	Target	800 kg of tungsten		1100 kg of tungsten		
	Detector technology	Emulsion vertex detector, electromagnetic and hadronic calorimeters		Emulsion vertex detector and spectrometer		
SN	LHC tunner Neutrin ND@LHC	Charged particles	Cha par	arged ticles Neutrinos Residual	LHC tunnel	
	100 m rock hadrons	LHC magnets	LH mag	HC hadrons	100 m rock	
	Jinnel 48	0 m ATLAS pp collisions		480 m	Ĭ112	

Riddhi Biswas | NTU, Singapore

S)

Backgrounds

Eur. Phys. J. C (2024) 84: 90

Major background for neutrino search – muons reaching the detector

- Muon bremsstrahlung & DIS
 - Muons not vetoed enter the fiducial volume generate showers
- Neutral Hadron Background
 - Muons interacting with surrounding material
 - Can mimic neutrino interactions

:= within SND@LHC acceptance

Neutral hadron Background energy confined to low energy (<100 GeV)

Energy distribution of the neutrals before and after rejecting events with the veto hits

Riddhi Biswas | NTU, Singapore

Neutrinos from charm production

- Expect 90% of $v_e + v_e$ to originate from charm decays.
 - $_{\circ}$ SND@LHC $\nu_{e}\text{+}\nu_{e}$ are a probe of forward charm production.
 - Forward charm production measurement constrains gluon PDFs at very low x (10^{-6}) .
- Impact on future higher energy hadron colliders and neutrino astrophysics.

Riddhi Biswas | NTU, Singapore

Neutrinos from charm production

- Expect 90% of $v_e + v_e$ to originate from charm decays.
 - $_{\circ}$ SND@LHC $\nu_{e}\text{+}\nu_{e}$ are a probe of forward charm production.
 - Forward charm production measurement constrains gluon PDFs at very low x (10^{-6}) .
- Impact on future higher energy hadron colliders and neutrino astrophysics.

Riddhi Biswas | NTU, Singapore

Lepton Flavour Universality tests

- Charm hadron decays contribute to the flux of all three types of neutrinos at SND@LHC.
- The detector has excellent flavour identification capabilities.
- Unique opportunity to test lepton flavour universality with neutrinos.
 - Take ratios of event rates: $v_{\rm e}/v_{\tau}$ and $v_{\rm e}/v_{\mu}$.

Riddhi Biswas | NTU, Singapore

Lepton Flavour Universality tests

- Charm hadron decays contribute to the flux of all three types of neutrinos at SND@LHC.
- The detector has excellent flavour identification capabilities.
- Unique opportunity to test lepton flavour universality with neutrinos.
 - Take ratios of event rates: $v_{\rm e}/v_{\tau}$ and $v_{\rm e}/v_{\mu}$.

Riddhi Biswas | NTU, Singapore

Feebly interacting particles

• SND@LHC is sensitive to new **dark sector** particles.

- **Scattering** in the detector.
 - E.g., scalars interacting with nucleons via a leptophobic portal.

- **Decaying** in the detector.
 - Dark scalars, heavy neutral leptons or dark photons decaying into a pair of charged tracks.

Riddhi Biswas | NTU, Singapore

<u>SV</u>

Feebly interacting particles

G.

