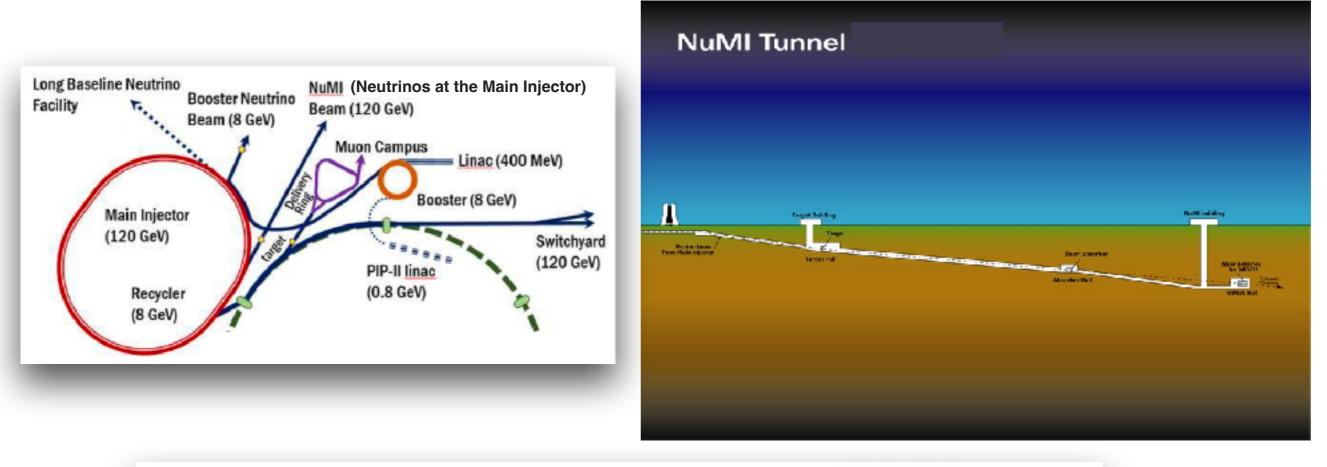
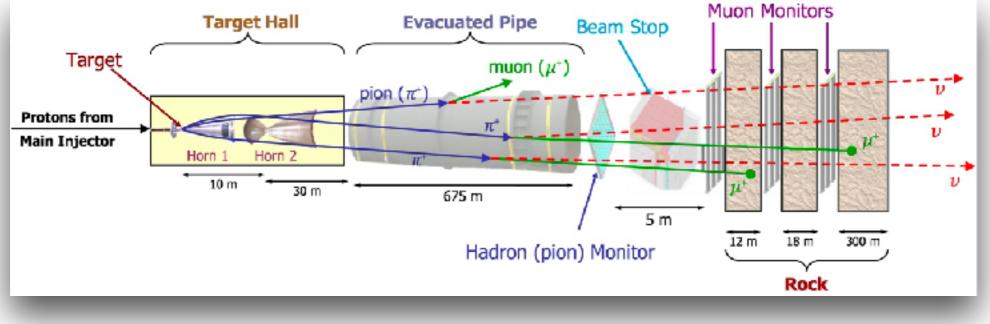
Fermilab Dus. Department of Science


Updates and Lessons Learned from NuMI Beamline at Fermilab


Athula Wickremasinghe / Katsuya Yonehara NuFACT 2024 Argonne National Laboratory

Outline

- Overview of NuMI beamline
- **o Beamline updates**
 - Target / horn / baffle
- o Testing 1 MW challange
- Future targets and horns
- Future NuMI beam operation plans

NuMI (Neutrinos at the Main Injector) Beamline

Major Upgrades for 1 MW Challenges

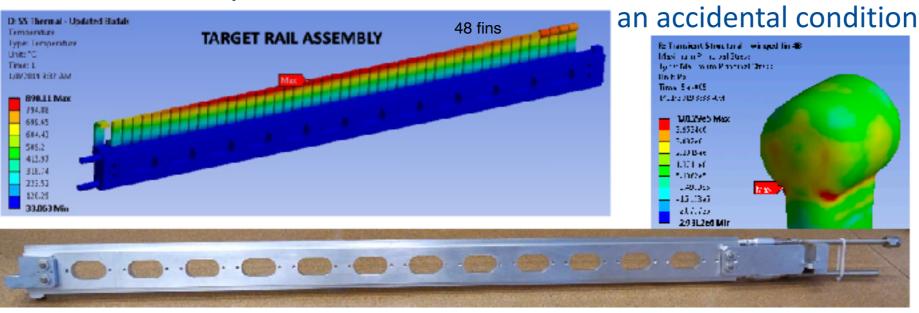
Beamline updates for 1 MW operations

1-MW NuMI target

1MW horn 1

- 2019 summer: Replaced the 700 kW target with 1 MW target.
 2020 summer: Updated horn
 - 1 and 2 for 1 MW operations.

- 2022 summer: Replaced the 1 MW target after completing the service duration.
- 2023 January: Replaced the horn 2 after having a stripline failure.

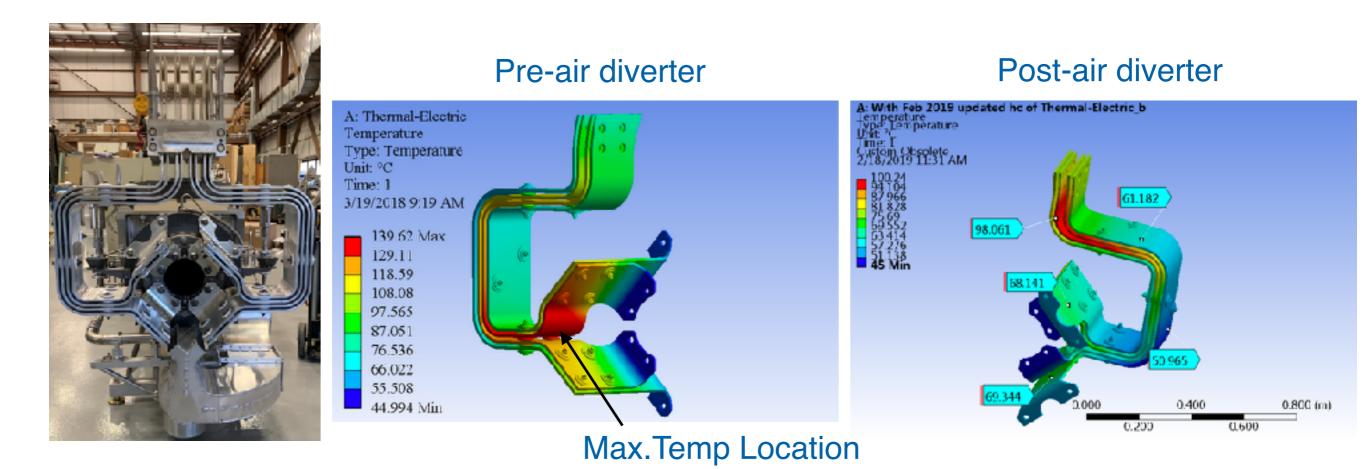

1MW horn 2

Target updates for 1 MW beam

Simulated temperature distribution

Target chase frame

Principal stress of a fin at


Old target (700 kW)

	Old (700 kW)	New (1 MW)
Width (mm)	7.4	9.0
Height (cm)	14.30	15.53
Segment length	2.5	2.5

6 09/16/2024 Athula Wickremasinghe

Horn updates for 1 MW beam

The 1 MW horn system has been constructed with powerful cooling capabilities. The stripling is cooled by an air diverter.

The temperature of the Max.Temp location has been reduced by ~70 C.

 The overall stripline temperature has been reduced significantly after adding the air diverter.

Baffle updates for 1 MW beam

- Enlarged the baffle hole diameter from 13 mm to 15 mm for 1 MW operations.
- Based on the thermal analysis, the peak Graphite and Aluminum temperature is ~50 °C for normal operation.

🛠 Fermilab

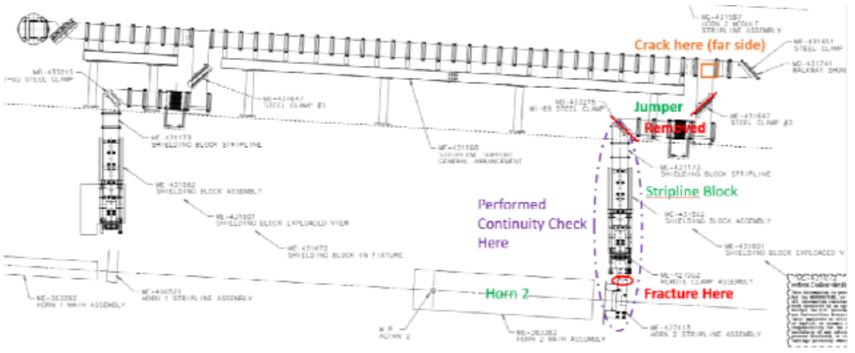
Beam spot size optimization

Quad current list (unit Amp) Horizontal β , Disp. Vertical β , Disp. Present Option 1 Option 2 QF109 61.194 61.194 61.194 -25.340 -25.340 QD110 -25.340 5 -325.491 -325.490 -325.491 QD111 QF112 342.140 342.141 342.141 -342.060 -338.100 QD113 -341.895 QF114 326.580 326.080 323.071 Referenced all all services (MACO 1 QF115 14.092 25.340 43.800 QD116 -75.698 -63.165 -71.658 5 57.202 QF117 50.513 51.199 QD118 -32.500-42.391-36.901 QF119 -23.190 -4.040-6.084Red: Present -156.016 QD120 -170.700 -196.339 Blue: Option2 QF121 35.143 44.299 46.946

QF: Quadrupole Focusing in horizontal plane QD: Quadrupole Defocusing in horizontal plane Number: Location (bigger is closer to the NuMI target) •

dispersion at the target is non-zero Option 2 is higher current but dispersion at the target is close to zero

Option 1 is lower current strength but


Beam spot size is optimized archiving the minimal dispersion at the target

🛟 Fermilab

Lessons learned

Horn 2 failure (12-03-2022)

A crack was found on the walkway stripline near Horn 2

• Found a crack facing out from the target pile on the outermost stripline at the very end of the right above the Horn 2 penetration.

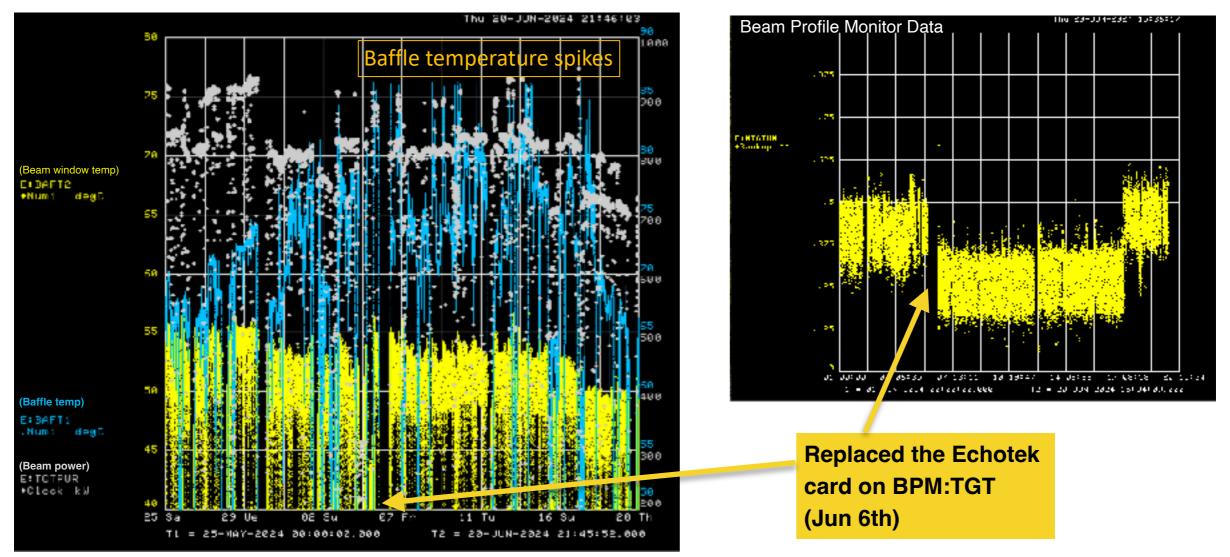
A fracture was located on conductor #4

• Found a fracture on one of the localized stripline conductors mounted on Horn 2.

- This is not an issue with the stripline design
- Uneven load on the bend stripline resulted metal fatigue failure
- Found a small defect that may have contributed for this issue

Sources of Baffle Temperature Increments

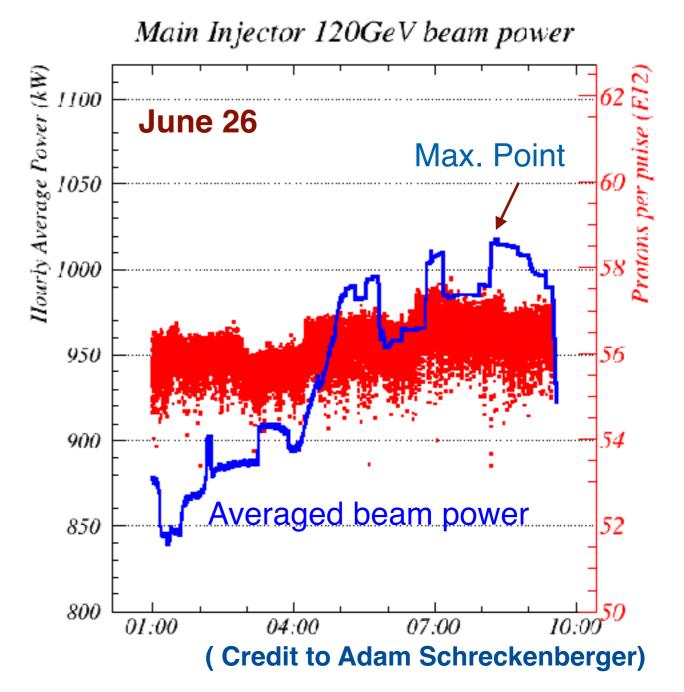
- The baffle temperature goes up when the beam scrapes through the baffle.
- Back scattered particles from the target also contribute for the baffle temperature increments


<u>A Naive Estimation of the Fraction of Beam Scraping at the Baffle</u>

- » Based on the baffle temperature increment of 40 C degrees for 800 kW beam, the estimated fraction of the protons scrape through the baffle is ~ 4.5 E-4.
- » This is below the beam loss limit ~1.0 E-3.

Baffle Temperature Issues

- Baffle temperature became unstable after June 1st.
- Unstable temperatures pulled the beam permit limit.
- Noticed a beam position shift after replacing the digitizer card.



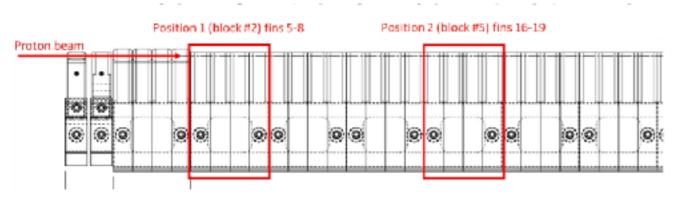
Studied the optimal beam position to minimize the baffle temperature.

‡ Fermilab

Tuning the MI beam for 1 MW challenge

- Tuned the MI chromaticity to achieve optimal beam spot size at the baffle for 1 MW challenge.
- Ramped up the beam power step by step.
- 04:12 to 06:53 Solidified MW capabilities
 - Occasional RF trips and LINAC downtime
- 06:53:20 Achieved averaged 1 MW challenge
- 08:21:02 Achieved one full hour of 1 MW beam with ZERO trips

🚰 Fermilab


Finally we recorded the averaged highest beam power 1.018 MW !!

Future Plans

Future Targets and Spare Horns

• We are currently finishing new 1 MW target to support LBNF targetry.

- Testing a new type of graphite.
- This provides a better thermal conductivity.
- Planning to install this new target in FY25.
- Finishing weld of spare horn 1.
- Will start welding NuMI spare horn 2 in early 2025.

Future Accelerator Operations Plan

	LONG SHUTDOWN START	FY2025	FY2026	FY2027	FY2028	FY2029	FY2030	FY2031 FY2032
	Updated 6/11/2024	Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q3	1 Q2 Q3 Q4 Q3	1 Q2 Q3 Q4 C	21 92 93 94 91 92 93 94 93
Project/Facility	Activity	CY2025 Q1 Q2 Q3				CY2029 01 02 03 04	CY2030	CY2031 CY2032
Accelerator Complex	DUNE Operations (w/Beam) MuZe Operations BNB Operations SY120/Test Beam Operations			1				
	NuMI Operations			4				LEGEND
	PIP-II Early CD-4 Booster Shutdown START			Booster an RR ON			Booster ON	Activity requires shutdown
PIP-II	Booster Shutdown END Linac Complex Civil construction Booster Connection Civil Constr. Ph1				OFF			Activity does not require shutdown
	Booster Connection Civil Constr. Ph2 Booster beam line connection				10000000 100000000 100000000			Beam to Experiment
	WFE and Linac commissioning BTL Commissioning Booster commissioning							Accelerator Complex
UIP	Central Utility Building Kautz Road Substation Replacement				the second se			Booster and Reycler ON, Main Injector OFF
	NSCF Civil Construction other than Extraction Remove MI Magnets				X82			Injector and Recycler
LBNF/DUNE	Extraction Enclosure Equipment Installation Beamline Installation other than Extraction							
	Beam Checkout							

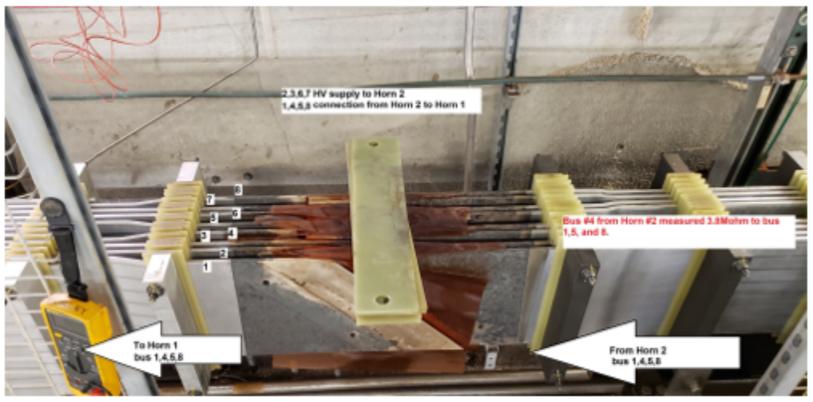
Planning to run the NuMI beam operations until the end of CY 2026.

Note: More details about the operation plan will be presented by Bob Zwaska

Fermilab accelerator plans and schedule	Robert Zwaska
APS- Building 402, Argonne National Laboratory	08:30 - 09:00

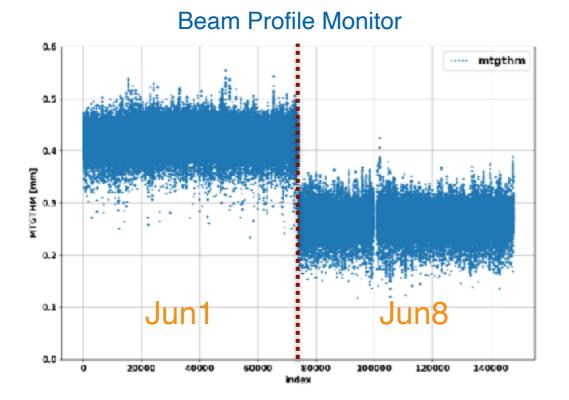
Summary

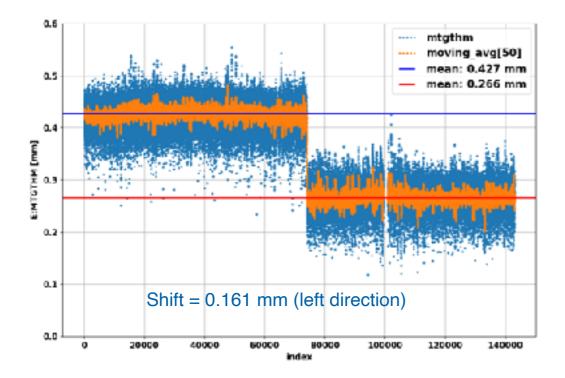
- Updated the target-baffle and horn system to achieve 1 MW operations.
- Optimized the beam spot size.
- Learned lessons from Baffle temperature issue and horn failures.
- Demonstrated the 1 MW challenge capability.
- Will test a new graphite composition to support the LBNF targetry studies.
- Preparing spare horns for future beam operations.
- Planning to run the NuMI beam until CY 2026.

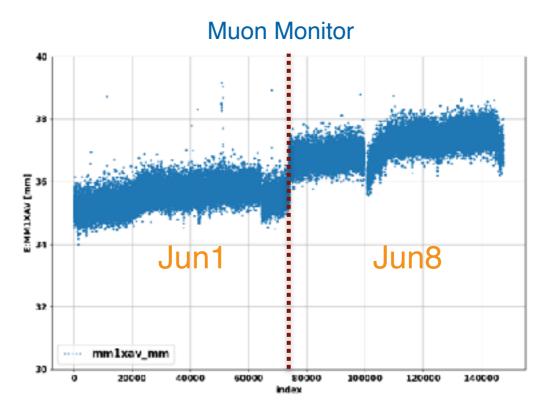

Thanks!

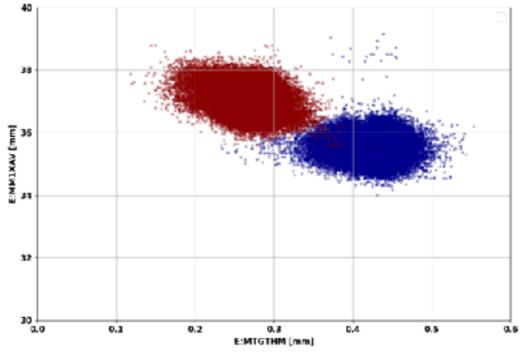
Horn details

	Horn 1	Horn 2
Horn shape	Double Parabolic	Double Parabolic
Construction	Nickel plated aluminum inner conductor Anodized aluminum outer conductor	Nickel plated aluminum inner conductor Anodized aluminum outer conductor
Minimum aperture field-free neck	9 mm radius	3.9 cm radius
Inner conductor thickness	2 mm (min) – 4.5 mm (max at neck)	3 mm (min) - 5 mm (max)
Outer conductor	11.75 inch I.D. 13.75 inch O.D.	29.134 inch I.D. 31.134 inch O.D.
Horn Length	300 cm focus region, 132 inches overall	300 cm focus region, 143 inches overall
Current	200 kA	200 kA
Motion control	$\pm 1 \text{ cm H x} \pm 1 \text{ cm V}$ each end (motor drive)	None
Horn cooling	RAW spray, 30 gal/min	RAW spray, 30 gal/min


A crack was found on the walkway stripline near Horn 2




-Nick Gurly 12/4/22


Baffle Temperature Issues

MM vs PM:H

‡ Fermilab