The Proton EDM

Alex Keshavarzi University of Manchester

NuFact 2024 Argonne National Laboratory 18th September 2024

The Strong CP problem

"The most underrated puzzle in all of physics."

Forbes, 2019.

@alexkeshavarzi

alexander.keshavarzi@manchester.ac.uk

alexander.keshavarzi@manchester.ac.uk

X @alexkeshavarzi

Strong CP Problem

- = Solves strong CP-problem!
- = CP-violation source for Baryon Asymmetry!
- = Unambiguous new physics (with no SM theory needed!).

Today to	t = 15 billion years		
Life on earth	T = 3 K (1 m eV)		
Solar system			
Quasars			
Galaxy formation Epoch of gravitational coll	lapse		
Recombination Relicradiation decoupt	t = 400,000 years		
Matter dom inatio Onset of gravitationa	I instability		
Nucleosynthesis Light elements creat	t = 3 minutes ted - D, He, Li T = 1 MeV		
Quark-hadron tra Hadronsform - prote	ansition ons&neutrons T=1GeV		
Electroweak pha Electromagnetic forces become di SU(3)xSU(2)xU(1	t = 10⁻¹¹s & weak nuclear ifferentiated: 1) -> SU(3)xU(1) t = 10-11s T = 10³GeV		
The P Axion	Particle Desert is, supersymmetry?		
Grand unificati G -> H -> SU(3 Inflation, baryo monopoles, co	$\frac{t = 10^{-35} \text{s}}{3 \text{ x} \text{SU}(2) \text{xU}(1)}$ $\frac{t = 10^{-35} \text{s}}{\text{T} = 10^{15} \text{GeV}}$ $\frac{T = 10^{15} \text{GeV}}{3 \text{ spin a strings, etc.}}$		
The Planck ep The quantu	boch $\frac{t = 10^{-43} \text{s}}{T = 10^{19} \text{GeV}}$		

alexander.keshavarzi@manchester.ac.uk

The Proton EDM

- Measure of charge separation of the system:
 - i.e. distribution of positive (u) and negative (d) charge within the proton.

- Uneven charge + electric field = EDM-induced torque.
- Results in vertical tilt the spin/polarisation:
 - We just need to measure an angle!

• Requires:

Phys. Rev. Accel. Beams 23 (2020) 024601.

- Longitudinally polarised protons.
- Electric storage ring (electric field bending).
- Polarimeters to measure polarisation.

- Direct nEDM limit: $|\vec{d}_n| < 1.8 \times 10^{-26} e \cdot cm$.
- No direct limit on pEDM!

• Best indirect limit: $\left| d_p^{\downarrow 199_{\text{Hg}}} \right| < 2.0 \times 10^{-25} e \cdot cm.$

→ θ_{QCD} (strong CP problem) improved > $\mathcal{O}(10^3)$.

X @alexkeshavarzi

pEDM Experiment: New Physics Reach

Strong CP Problem	Matter- Antimatter Asymmetry	Dark Matter	EDM loop induced = wide range of interactions/energy scales $d_p \sim (g^2/16\pi^2) (e m_q)/\Lambda_{\text{NP}}^2 \sin \phi^{\text{NP}} e \cdot cm$ $m_q = \text{mass of 1-loop quark, } \phi^{\text{NP}} = \text{complex CP violation phase of NP}$	
Solved!	Model- independent CP-violation.	Oscillating pEDM signature = $axion$ [$O(10^2)$ larger than nEDM!]. ERJC 84 (2024) 12, arXiv:2308.16135, PRD 99 (2019) 083002, PRD 104 (2021) 096006	Light, weak new physics: $\Lambda_{\rm NP} \sim 1 \text{ GeV}, \ g \lesssim 10^{-5}, \ \phi^{\rm NP} \sim 10^{-10}.$ [e.g. LZ, LDMX, FASER, SHIP.]	${\cal O}({ m PeV})$ mass scale: $\phi^{ m NP} \sim 1, \ \Lambda_{ m NP} \sim 3 \times 10^3 \ { m TeV}.$ [e.g. LHC/FCC.]

Federica Petricca, Direct Dark Matter Detection Report Community Feedback Meeting (2021).

Consider Muon g-2 experiment: charged particle in magnetic (\vec{B}) and electric (\vec{E}) fields:

$$\vec{\omega}_{spin} = \vec{\omega}_{MDM} \approx \frac{e}{m} \left[a \vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right) \left(\vec{\beta} \times \vec{E} \right) \right].$$

Consider Muon g-2 experiment: charged particle in magnetic (\vec{B}) and electric (\vec{E}) fields:

$$\vec{\omega}_{spin} = \vec{\omega}_{MDM} \approx \frac{e}{m} \left[a\vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right) (\vec{B} \times \vec{E}) \right]$$

Muon \rightarrow storage ring magnet $R_0 = 7.112$ m and B = 1.45 T ...

Choose muon g-2 <u>magic-momentum</u>, $\gamma_{\text{magic}} = \sqrt{1 + 1/a} \rightarrow p = 3.094 \text{ GeV/c}.$

5

<u>Use</u> Muon g-2 principles: charged particle <u>with EDM</u> in magnetic (\vec{B}) and electric (\vec{E}) fields:

$$\vec{\omega}_{spin} = \vec{\omega}_{MDM} + \vec{\omega}_{EDM} \approx \frac{e}{m} \left[a\vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right) \left(\vec{\beta} \times \vec{E} \right) + \frac{\eta}{2} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right], \quad \vec{d} = \eta \frac{q\hbar}{2mc} \vec{S}.$$

<u>Use</u> Muon g-2 principles: charged particle with EDM in magnetic (\vec{B}) and electric (\vec{E}) fields:

$$\vec{\omega}_{spin} = \vec{\omega}_{MDM} + \vec{\omega}_{EDM} \approx \frac{e}{m} \left[a\vec{B} + \begin{pmatrix} a & 1 \\ \gamma^2 - 1 \end{pmatrix} (\vec{\beta} \times \vec{E}) + \frac{\eta}{2} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right], \quad \vec{d} = \eta \frac{q\hbar}{2mc} \vec{S}$$

Proton \rightarrow electric storage ring $R_0 = 800$ m and E = 4.4 M/m ...

Choose pEDM <u>magic-momentum</u>: $a\vec{B} + (a - \frac{1}{v^2 - 1})(\vec{\beta} \times \vec{E}) = 0 \rightarrow p = 0.7$ GeV/c.

Frozen-spin technique!

X @alexkeshavarzi

<u>Use</u> Muon g-2 principles: charged particle with EDM in magnetic (\vec{B}) and electric (\vec{E}) fields:

$$\vec{\omega}_{spin} = \vec{\omega}_{MDM} + \vec{\omega}_{EDM} \approx \frac{e}{m} \left[a\vec{B} + \begin{pmatrix} a & 1 \\ \gamma^2 - 1 \end{pmatrix} (\vec{\beta} \times \vec{E}) + \frac{\eta}{2} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right], \quad \vec{d} = \eta \frac{q\hbar}{2mc} \vec{S}.$$

Proton \rightarrow electric storage ring $R_0 = 800$ m and E = 4.4 M/m ...

Frozen-spin technique! Choose pEDM <u>magic-momentum</u>: $a\vec{B} + \left(a - \frac{1}{v^2 - 1}\right)\left(\vec{\beta} \times \vec{E}\right) = 0 \rightarrow p = 0.7 \text{ GeV/c}.$

- Inject $\mathcal{O}(10^{10})$ polarized protons every twenty minutes.
- \vec{E} -field bending and \vec{B} -field focusing.
- Vertical polarization in polarimeter = static EDM.

And no SM calculation to compare to!

What about large, T-conserving systematics that mimic vertical, T-violating EDM, e.g. radial \vec{B} field?

<u>Use</u> Muon g-2 principles: charged particle with EDM in magnetic (\vec{B}) and electric (\vec{E}) fields:

$$\vec{\omega}_{spin} = \vec{\omega}_{MDM} + \vec{\omega}_{EDM} \approx \frac{e}{m} \left[a\vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right) (\vec{\beta} \times \vec{E}) + \frac{\eta}{2} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right], \quad \vec{d} = \eta \frac{q\hbar}{2mc} \vec{S}.$$

Proton \rightarrow electric storage ring $R_0 = 800$ m and E = 4.4 M/m ...

Frozen-spin technique! Choose pEDM <u>magic-momentum</u>: $a\vec{B} + \left(a - \frac{1}{v^2 - 1}\right)\left(\vec{\beta} \times \vec{E}\right) = 0 \rightarrow p = 0.7 \text{ GeV/c}.$

- Inject $\mathcal{O}(10^{10})$ polarized protons every twenty minutes.
- \vec{E} -field bending and \vec{B} -field focusing.
- Vertical polarization in polarimeter = static EDM.

And no SM calculation to compare to!

What about large, T-conserving systematics that mimic vertical, T-violating EDM, e.g. radial \vec{B} field?

\rightarrow Store CW and CCW beams (time reverse of each other) to cancel these effects!

pEDM potential locations

(Short) path to readiness

Main message: no showstoppers! Due diligence, physics case studies, moving to TDR phase...

Already completed...

- Experiment design, engineering and modelling complete.
- Prototype components under construction.
- Measurement techniques understood.
- Key systematics understood.

Work to be done...

- Precision beams studies (Muon g-2 experts).
- Options for improved polarimetry (e.g. CMOS).
- Alignment system, methodology and studies.
- Simulate 10³ particles for 10³ seconds beam lifetime.
- More realistic costing (estimated *O*(\$100M)).

Build community/collaboration!

- Increased involvement (you are invited!).
- New generation to start and finish experiment.

- From TDR to final publication in < 20 years.
- Can be started and finished by the new generation.
- Paramount physics drivers:
 - Solve strong CP problem.
 - Baryon asymmetry.
 - Dark matter.

Arguably one of the most low-cost/high-return proposals in particle physics today!

Conclusions

- pEDM experiment is the first direct search for the proton EDM.
- Improves on current (indirect) limit by $> O(10^4)$.
- Directly address/solves the strong CP problem.
 - Strong CP/pEDM ↔ Astro + Particle + Nuclear.
- Significant new physics drivers:
 - CP-violation source for Baryon Asymmetry.
 - Sensitive probe for axionic dark-matter.
 - Probe light-weak new particles \rightarrow PeV-scale new physics.
 - No EDM would also be dramatic \rightarrow at SM limit.
- Major R&D completed / systematics understood.
- From TDR to final publication in < 20 years.
- One of the most low-cost/high-return proposals in particle physics today.

This is a beautiful experiment to precisely measure an angle... You can be a part of it.

