The SuperFGD for the T2K experiment

Tristan Doyle on behalf of the SuperFGD group

NuFACT 2024

Thursday 19th September 2024

The T2K Experiment

- Neutrino oscillation measurements
 - \rightarrow See talks by Ed Atkin and myself
- Neutrino cross-section measurements
 - \rightarrow See talk by Laura Munteanu

Tristan Doyle (Stony Brook University) The SuperFGD for the T2K experiment

Original Off-Axis Near Detector: ND280

ND280 Limitations

Tristan Doyle (Stony Brook University)

The SuperFGD for the T2K experiment

Thursday 19th September 2024 4 / 22

ND280 Upgrade

- To address limitations of ND280, replace PØD with three new subdetectors:
 - $\rightarrow\,$ SuperFGD: highly segmented target material with excellent tracking capability $\rightarrow\,$ this talk
 - \rightarrow High Angle TPCs: measure momentum, charge and particle ID with better angular acceptance \rightarrow see talk by Samira Hassani
 - $\rightarrow\,$ Time-of-Flight: precise timing information to reject backgrounds and improve reconstruction

SuperFGD

- 2 million optically isolated 1 cm³ plastic scintillator cubes
- 56,000 wavelength shifting fibers
 - $\rightarrow~$ Three orthogonal fibers per cube
 - $\rightarrow\,$ Each coupled to an MPPC

SuperFGD Prototype and CERN Beam Test

- Technology demonstrated using small-scale prototypes
- 48×24×8 cm³ prototype exposed to charged particle beams at CERN
 - $\rightarrow~$ 2020 JINST 15 P12003
 - ightarrow Average light yield = 58 PE per MIP
 - $\rightarrow~3\%$ cross-talk
 - $\rightarrow~1.1\,\text{ns}$ time resolution per channel
 - $\rightarrow\,$ Very good particle ID

Neutron Beam Test at LANL

- Ability to measure neutron kinematics demonstrated by exposing same prototype to LANL neutron beam
- Also exposed a second prototype (US-Japan prototype) to the beam
- Data taken in 2019 and 2020

US-Japan prototype:

Tristan Doyle (Stony Brook University)

The SuperFGD for the T2K experiment

Measuring Neutron Energy with SuperFGD Prototype

- A gamma flash arrives before the neutron
 - $\rightarrow~$ Can be used as a trigger
- Measure neutron energy event-by-event using time-of-flight

Neutron Cross-Section Measurement with SFGD Prototype

Physics Letters B 840 (2023) 137843

- Measure cross section in each energy bin using attenuation of the neutron beam
 - $\rightarrow~$ Select simple topology: single track
 - \rightarrow Extract total cross section using extinction method $N_0 e^{-T\sigma z}$
- Data above prediction from Geant4 Bertini model below 200 MeV
- Measurement made with 2019 data, investigation of 2020 data ongoing

Tristan Doyle (Stony Brook University)

The SuperFGD for the T2K experiment

SuperFGD Assembly

(i) Support system assembly

(iv) Stop panels removed

(ii) First cube layer assembly

(v) Box closure

(iii) All 56 layers assembled

(vi) Transfer to new support

- Cubes first assembled in 56 layers using fishing lines \rightarrow Very labour intensive, took \sim 20 months!
- Layers then assembled in mechanical box at J-PARC

Tristan Doyle (Stony Brook University) The SuperFGD for the T2K experiment

Thursday 19th September 2024 11 / 22

SuperFGD Assembly

(vii) Horizontal fibers assembly

(viii) Wall MPPCs assembly

(ix) Vertical fibers assembly

(x) Top MPPCs assembly

(xi) LED calib. modules assembly (xii) Light barrier/cables assembly

• After cube installation: inserted fibers and installed MPPCs, LED calibration system, light barrier, and cables \rightarrow Total time for this + layer installation = \sim 6 months

Commissioning and Installation

Tristan Doyle (Stony Brook University)

The SuperFGD for the T2K experiment

Thursday 19th September 2024 13 / 22

High Gain and Pedestal Calibration

- LED panels at one end of WLS fibers used for calibration
- Peaks in "finger plot" correspond to p.e. values
- Fit Gaussian to each peak and calculate gain as distance between peaks
- 0 p.e. point (pedestal) comes from extrapolation of peak positions found with different gain voltage settings

Detector Performance - Light Yield

• For each hit there is a high gain (HG) ADC and a low gain (LG) ADC \rightarrow LG calibrated using cosmic data

• Linear relationship between HG and LG provides larger dynamic range

Detector Performance - Light Yield

- Also measure time over threshold (ToT) for each hit
- Can convert ToT to HG using exponential relationship
- Provides even larger dynamic range than LG
 - $\rightarrow\,$ Together HG, LG and ToT provide coverage over many signals

Detector Performance - Attenuation Length

- Three fibers per cube allows construction of attenuation length plot \rightarrow More reliable characterisation of response and calibration
- For a given distance from the MPPCs, plot observed light from hits in cosmic events
- Fit distribution as a function of distance with an exponential function to extract attenuation length
 - $\rightarrow\,$ Measured attenuation length consistent with specification of WLS fibers

Detector Performance - Timing Resolution

• Select hits > 40 p.e. matched in all three dimensions

- Compare mean time of hit to mean time for event
- Gives $\sim 1.2 \text{ ns}$ time resolution per channel
 - $\rightarrow\,$ Can be improved by electronics firmware update!

First Neutrino Interactions in the SuperFGD

• First beam data taken in November/December 2023 and February 2024 with SFGD, bottom HAT and four TOF panels

Physics Benefits

- Higher efficiency for backwards and high-angle muons
- Lower proton reconstruction threshold
- Reconstruct neutron kinematics event by event for the first time

The SuperFGD for the T2K experiment

New Analyses are Possible

PhysRevD.101.092003 (2020)

- Interactions on hydrogen with measured neutron kinetic energy
 - \rightarrow A sample free of nuclear effects!

Tristan Doyle (Stony Brook University) The SuperFGD for the T2K experiment Thursday 19th September 2024 21/22

- The SuperFGD has been assembled, commissioned and installed as part of the T2K near detector upgrade
- It provides a highly segmented target material with excellent tracking capability
 - ightarrow Demonstrated with prototypes before full scale production
- Studies of the detector response are advancing well, with general agreement with test beam results
- The detector is now taking neutrino data!
 - $\rightarrow~$ Lots of exciting physics to come!

BACKUP

