

Electromagnetic Response Studies in the NOvA Test Beam

Presented on behalf of the NOvA Collaboration

Dalton Myers

The University of Texas at Austin September 2024

Panoramic Image of the (late) NOvA Test Beam Detector and Beamline (Credit to Alex Sousa)

NOvA – NuMI Off-Axis v_e Appearance

- 2 Detectors 14.6 mrad (~0.8°) off beam axis
 - Near Detector (Fermilab)
 - Far Detector (Ash River, MN)
- v_{μ} (or anti- v_{μ}) provided by NuMI
- Measure $v_{\mu}^{''}$ disappearance and $v_{e}^{'}$ appearance at FD

NOvA Preliminary

NOvA – Recent Results

- NOvA is a world-leader in neutrino oscillation parameter measurements
- Improving NOvA's uncertainties benefits the reach of neutrino physics globally
- Launched Test Beam program in 2019 to better understand calibration-related systematics

Dalton Myers - NuFact September 2024

The Test Beam Beamline

- **1.** 64 GeV/c hadronic beam interacts with **Cu Target** producing 0.2 2 GeV spray (p, K[±], e[±], μ^{\pm} , π^{\pm})
- 2. Particles far from the ideal beamline path (-----) are filtered out using Collimators
- 3. Momentum determined by Magnet & MWPCs (Measures bend angle through known B-Fields)
- 4. First PID performed by **ToF System** (p, K[±], or "fast" particle)
- **5.** Out of "fast" particles (e[±], μ^{\pm} , π^{\pm}), **Cherenkov** tags e[±] separately from π^{\pm}/μ^{\pm}
- 6. Particles of known species and momentum enter the **NOvA Detector**

Electron Selection

• Allows discrimination of e^{\pm} vs. μ^{\pm}/π^{\pm}

Cu Targe

NOvA Test Beam Detector

Example electron candidate event display ToF: 32.6 ns Reco. Momentum: 1070 MeV/c

- 50 100 200 250 300 400 Beam **Top View** (cm) -100Beam (cm) **Side View** 200 250 100 300 350 400 z (cm) NOvA - FNAL E929 hits hits Run: 101301 / 12 and an an an an a shirt of Event: 6607 / Beamline UTC Fri Apr 16, 2021 53 51 52 54 10 10^{2} 8:24:42.582600704 a (ADC t (usec)
- ND & FD technology
- TB: 63 planes;
 30 tons
- ND: 214 planes; 300 tons
- FD: 896 planes; 14 ktons

Electromagnetic Energy Response Measurement

Goal:

- Associate calorimetric response of NOvA hardware to beamline momentum measurements
- Incorporate into electron reconstruction
 - \circ v_{e} appearance measurements

Dalton Myers - NuFact September 2024

Electron Energy Spectrum in the NOvA Detector

 Low-energy tail in electron energy spectrum in data and MC

Background µ
 from MCenter
 beam target

Energy Loss in Beamline Materials – Simulation

- Simulated 1 GeV e⁺ in the Test Beam
 - 1000 A magnet current
 - Plotted true e⁺ energy at NOvA
 Detector face
- Electrons lose energy via matter interactions
 - Stochastic process
 - Radiative losses occur primarily in beamline scintillators (ToF modules)

Investigating Beamline Energy Loss

- 1. Simulated more electrons in the Test Beam beamline
- 2. Split reconstructed events
 - a. >15% beamline energy loss \rightarrow Highly radiative
 - b. <15% beamline energy loss \rightarrow Low radiative
- 3. Looked for properties that could be used to separate these events in data

Due to where the energy losses occur, highly radiative and low radiative events look identical in BL momentum

Dalton Myers - NuFact September 2024

Idea: Use Event Topology Characteristics to Filter Events

- Need to look for the least-biased way to filter events with significant energy loss in the beamline
- Looked for reconstructed quantities that can be used to aid separation
 - Found several with promise!

kNN Classifier Algorithm:

- 1. Choose any number of variables that can aid separation
- 2. Choose a dimensionless normalization for each variable
- 3. Choose a value for k

kNN requires no training!

To use: $P(\text{class}) = \frac{\# \text{ of class in } k \text{ nearest neighbors}}{k}$

Topological Event Properties in NOvA – NHits

Reconstructed number of cell hits assigned to electron prongs

Simulated magnetic current settings 500A, 750A, 1000A, 1250A left-to-right

Topological Event Properties in NOvA – Prong Len.

Reconstructed length of electron prongs

Simulated magnetic current settings 500A, 750A, 1000A, 1250A left-to-right

Energy Ratio – Planes 0 & 1 to Total

- Reconstructed ratio of energy in planes 0 & 1 to total
- Reconstructed energy near the beginning of tracks as a fraction of the total track energy Simulated magnetic current settings 500A, 750A, 1000A, 1250A left-to-right

Dalton Myers - NuFact September 2024

WHAT STARTS HERE CHANGES THE WORLD

Thanks for Listening!

Questions?

AND DUR DO

Test Beam Electron Selection

Electrons are identified using **Multiwire Proportional** the ToF system, the Chambers (MWPCs) Cherenkov Cherenkov Detector, and the Collimators **NOvA Detector NOvA** Detector Secondary ToF of ~32 ns **Time of Flight** (ToF) System **Analyzer Magnet Cherenkov Activity Cu Target Reco. Electron Prong** 10 K+ **NOvA Preliminary** proton mu+ 105 pi+ Threshold (atm) Reconstructed Time of Flight (ns) 10 10^{3} 300 10^{2} 60 10 200 50 Pressure 10-1 10-2 100 10-3 30 10-4 20 1500 500 1000 10^{-5} Reconstructed Momentum (MeV/c) 0.5 1.5 2.5 2

Momentum (GeV)

Energy Ratio – Plane 0 to Total

- Reconstructed ratio of energy in plane 0 to total
- Track energy location ratios have some discrepancies number of events with 0 reco hits in plane 0 Simulated magnetic current settings 500A, 750A, 1000A, 1250A left-to-right

Time of Flight (ToF) System

NOvA Preliminary

Dalton Myers - NuFact September 2024

- Each ToF module made of a scintillator block surrounded by 4 PMTs
- 9.9 m path length → 33 ns time difference for v ≅ c
- Resolves p and K from "fast particles" in relevant momentum range: (500-1150) MeV/c

collimators

Tertiary beam

Magne

Fime of Fligh

Dalton Myers - NuFact September 2024

Cherenkov Detector

- Designed and built at UT Austin
- Contains CO₂ at a pressure of 1 atm
 - Tuned so only electrons will be above the Cherenkov threshold in the relevant momentum range
- Cherenkov light is reflected by an angled mirror and detected by a PMT in the lower arm

Multi-Wire Proportional Chambers (MWPCs)

Wire Chamber

- Connecting hit points of the 2 sets of modules upstream and downstream of the magnet gives 2 tracks
- Angle between tracks gives momentum reconstruction

Reconstructed momentum accuracy of ~1-3%

NOvA Test Beam – Motivation

- Better understanding of Systematic Uncertainties
- Beamline-measuring components measure particles before they enter a scaled-down NOvA detector
- Looking at e, μ , π^{\pm} , K[±], and p \rightarrow **not neutrinos**
- Understand uncertainty associated with Detector Calibration and Detector Response (NOvA-specific terms)

Topological Event Properties

- No single topological is sufficiently separated in these samples to use 1D cuts
- Plan to use a number of topological properties to inform a kNN binary classifier
- Prong length and number of reconstructed hits in particular show separation potential Simulated magnetic current settings 500A, 750A, 1000A, 1250A left-to-right

Topological Event Properties – Data/MC Comparisons

• Track energy location ratios have some discrepancies

Simulated magnetic current settings 500A, 750A, 1000A, 1250A left-to-right

Topological Event Properties

- Reconstructed energy near the beginning of tracks as a fraction of the total track energy also shows promise
 - Looked at 1st plane/total & 1st 2 planes/total
 Simulated magnetic current settings 500A, 750A, 1000A, 1250A left-to-right

Test Beam Electron Simulation

Dalton Myers - NuFact September 2024

Ordinarily, we simulate the 64 GeV/c hadronic beam interaction with the target

• Inefficient for electrons

Alternative Simulation Paradigm:

- 1. Simulate beamline particles downstream of the target
- 2. Simulate beamline interactions and detector responses
- 3. Simulate response of the NOvA Detector