New MeV-scale capabilities in the MicroBooNE liquid argon time projection chamber

NuFact 2024

Argonne National Laboratory September 18, 2024

Will Foreman (LANL) on behalf of the MicroBooNE Collaboration

MicroBooNE

- Surface-level LArTPC, 85 metric ton active volume
- Exposed to Fermilab's Booster and NuMI neutrino beamlines from 2015-2021
- Primary goal: investigate "low-energy" (~200 MeV)
 v_e excess observed by MiniBooNE

Energy scales in MicroBooNE events

Energy scales in MicroBooNE events

high-energy reconstruction algorithms

neutron inelastic collisions

Benefits of MeV-scale sensitivity

Whitepaper from Snowmass J. Phys. G: Nucl. Part. Phys. 50 033001

Benefits of MeV-scale sensitivity

W. Foreman / NuFact 2024 @ ANL

Benefits of MeV-scale sensitivity

W. Foreman / NuFact 2024 @ ANL

Past demonstrations in small LArTPCs

measured de-excitation γ/n from $v_{\mu}CC$ interactions

ArgoNeuT Collaboration, Phys. Rev. D 99, 012002 (2019) 1800 1600 0 1400 1200 track from v.CC 1000 NuMI beam) Time (ticks) 1800 () 1400 1200 1000 600 Wire 100 Data De-excitation 80 Neutron Number of Clusters 60 40 20 0 10 20 30 40 50 60 70

→ searched for millicharged particles (BSM)

ArgoNeuT Collaboration, Phys Rev Lett. 124, 131801 (2020)

W. Foreman / NuFact 2024 @ ANL

Distance (cm)

Past new demonstrations in small LArTPCs

LArIAT LArTPC test-

See poster by Miguel Hernandez

<u>Measurements of Pion and Muon</u> <u>Nuclear Capture at Rest on Argon in</u> <u>the LArIAT Test Beam Experiment</u>

Remaining challenges

- Successful demonstrations in a small LArTPC... can we do the same in large ones?
 - Lowering thresholds
 - Precise energy reconstruction
 - Controlling low-energy backgrounds

Remaining slides will focus on two recent results from MicroBooNE

JINST 17 P11022 (2022)

Observation of radon mitigation in MicroBooNE by a liquid argon filtration system

The MicroBooNE collaboration

P. Abratenko, ^{ah} J. Anthony,^d L. Arellano,^s J. Asaadi,^{ag} A. Ashkenazi,^{ae}
S. Balasubramanian,^k B. Baller,^k C. Barnes,^u G. Barr,^x J. Barrow,^{i,ae} V. Basque,^k
L. Bathe-Peters,^m O. Benevides Rodrigues,^{ad} S. Berkman,^k A. Bhanderi,^s A. Bhat,^{ad}
M. Bhattacharya,^k M. Bishal,^b A. Blake,^p T. Bolton,^o J.Y. Book,^m L. Camilleri,ⁱ D. Caratelli,^{c,k}
I. Caro Terrazas,^h F. Cavanna,^k G. Cerati,^k Y. Chen,^{a,aa} D. Cianci,ⁱ J.M. Conrad,ⁱ
M. Convery,^{aa} L. Cooper-Troendle,^{ak} J.I. Crespo-Anadón,^e M. Del Tutto,^k S.R. Dennis,^d
P. Datie^d A. Ducitt,^e B. Ducho^{k, P} D. Derlill,ⁿ K. Dutfu^{k,k, S} D. Ducho^k Y.

Phys Rev D 109, 052007 (2004)

PHYSICAL REVIEW D 109, 052007 (2024)

Measurement of ambient radon progeny decay rates and energy spectra in liquid argon using the MicroBooNE detector

P. Abratenko,³⁶ O. Alterkait,³⁶ D. Andrade Aldana,¹⁵ L. Arellano,²⁰ J. Asaadi,³⁵ A. Ashkenazi,³³ S. Balasubramanian,¹² B. Baller,¹² G. Barr,²⁶ D. Barrow,²⁶ J. Barrow,^{21,33} V. Basque,¹² O. Benevides Rodrigues,¹⁵ S. Berkman,¹² A. Bhanderi,²⁰ A. Bhat.⁷ M. Bhattacharva.¹² M. Bishai.³ A. Blake.¹⁷ B. Bogart.²² T. Bolton.¹⁶ J. Y. Book.¹⁴ L. Camilleri.¹⁰ Y. Cao.²⁰

W. Foreman / NuFact 2024 @ ANL

Signal processing in MicroBooNE

Filtering/deconvolution Equivalent noise charge ENC ~ 300 e⁻ per ADC

Signal processing in MicroBooNE

Hit-finding → Gaussian fits to pulses on each wire to reconstruct arriving charge

3D track/shower reconstruction

Signal processing in MicroBooNE

Plane B

20

isolated hits

MicroBooNE Data

10³

10²

100

w-threshold reconstruction

Plane 2 charge [×10³ e]

2-3 planes matched

Radon R&D studies in MicroBooNE

- To test its MeV-scale sensitivity, radon was introduced into Lar circulation during a special 2021 R&D run
 - ²²²Rn has a 3.8 day half-life

mixes diffusely throughout active volume

- ²¹⁴Po has a short (164 µs) half-life can tag ²¹⁴Bi \rightarrow ²¹⁴Po decay

W. Foreman / NuFact 2024 @ ANL

Energy scale of signals

sensitivity to lower energies

W. Foreman / NuFact 2024 @ ANL

Bi-Po candidate rate in radon-doped LAr

Usual filter configuration

Bi-Po candidate rate in radon-doped LAr

"Filter bypass"

Surprising results:

- Data-based confirmation of sensitivity at < 1 MeVee
- Radon backgrounds removed by electronegative filtration

Follow-up study

 Improved reconstruction and developed technique to subtract backgrounds using a parallel sideband selection

W. Foreman / NuFact 2024 @ ANL

Follow-up study

 Improved reconstruction and developed technique to subtract backgrounds using a parallel sideband selection

W. Foreman / NuFact 2024 @ ANL

Calorimetric validation: 0-3.3 MeV β_{Bi}

Calorimetric validation: 7.7 MeV α_{Po}

Calorimetric energy resolution from MC

With MC validated on data, we can extract the energy resolution

MC electron resolution:

- 10% at 1 MeV
- 8% at 5 MeV

DUNE requirements for:

- SNe v: ~10-20% Euro. Phys. J. 81, 423 (2021)
- Solar v: ~7% for > 5 MeV Phys. Rev. Lett. 123, 131803 (2019)

Searching for ambient radon in physics data

R_{Bi} = 0.01 ± 0.16 (stat) ± 0.06 (syst) mBq/kg = 0.01 ± 0.17 mBq/kg < 0.35 mBq/kg at 95% CL

Searching for ambient radon in physics data

Ongoing work using ambient blips

- Using G10 'hotspots' at edge of detector as MeVscale calibration source (Compton edge from radioactive ²⁰⁸Tl γ)
- Identifying proton-like blips in cosmogenic data

See poster by Diego Andrade!

Demonstrating MeV-Scale Physics Capabilities of Large Neutrino LArTPCs with Ambient Blip Activity in MicroBooNE

Conclusions

- MicroBooNE is working to expand calorimetric capabilities of LArTPCs by pushing to unprecedented MeV-scale energies
 - 100 keV threshold
 - ~10% resolution at 1 MeV
- Developed method of monitoring ²²²Rn contamination in-situ using standard data
- New custom tools are being integrated in other BSM and GeV-scale v analyses
 - Millicharged particle searches
 - NC v-p elastic scattering
 - Low-energy proton vertex finding for single shower events (1g0p)

Thank you!

Photo-ionizing dopants

Improving LArTPC Performance with Photo-Ionizing Dopants, Joseph Zennamo

Solar neutrinos in DUNE

DUNE as the Next-Generation Solar Neutrino Experiment

Phys. Rev. Lett. 123, 131803

 Δm_{12}^2 probed by day-night flux asymmetry $A_{D/N} = (D-N)/{1\over 2}(D+N)$

Can break degeneracy between θ_{12} and $\varphi(^{8}\text{Bi})$ by measuring two interaction channels via crude angular cuts: $\nu_{e} + {}^{40}\text{Ar} \rightarrow e^{-} + {}^{40}\text{K}^{*} \longrightarrow R_{\text{Ar}} \propto \phi(^{8}\text{B}) \times \sin^{2}\theta_{12}$ $\nu_{e,\mu,\tau} + e^{-} \rightarrow \nu_{e,\mu,\tau} + e^{-} \longrightarrow R_{e} \propto \phi(^{8}\text{B}) \times (\sin^{2}\theta_{12} + \frac{1}{6}\cos^{2}\theta_{12})$

FIG. 3. Estimated precision of the ν_e and $\nu_{\mu,\tau}$ content of the ⁸B flux, present (SNO [5, 53]) and future (DUNE), with the ellipse for DUNE alone. Based on a simplified analysis, with only statistical uncertainties (1σ) but assuming 2 d.o.f., and with SNO fluxes slightly rescaled to match their global-fit ⁸B flux. Note small axis ranges. Full analysis in text.

Energy resolution improvements in LAr

TABLE I. Detection thresholds according to the DUNE CDR document [5]. The values given correspond to the kinetic energy of each particle.

	p	π^{\pm}	γ	μ	е	others
Thresholds (MeV)	50	100	30	30	30	50

- (1) *CDR thresholds*: Any particle created below the thresholds listed in Table I is lost.
- (2) *Total charge calorimetry*: Thresholds are set to zero and no information about the hadronic system other than the total ionization charge is used.
- (3) *Detailed event reconstruction*: Thresholds are low and recombination corrections are applied to each particle in the event individually.

FIG. 14. Simulations of reconstructed neutrino energies for $E_{\nu} = 3$ GeV true energy in the CC $\nu_e + {}^{40}$ Ar scattering process. The histograms correspond to three different sets of assumptions, as described in the text.

Phys. Rev. D 99, 036009 (2019)

FIG. 15. Same as Fig. 14, but for $\bar{\nu}_e + {}^{40}\text{Ar}$ scattering.

W. Foreman / NuFact 2024 @ ANL

Diffuse neutron BGs from radon

Remaining Challenges Opportunities?

Radon in dark matter experiments

- Existing methods of radio-purification in LAr:
 - rigorous material screening
 - outgassing campaigns
 - specialized systems for filtering Rn from gaseous argon
- DUNE aims to achieve < 1 mBq/kg to accomplish the goals laid out in previous slides
- How will we accomplish this?
 - Filtration in the gaseous phase will be more challenging at large scale

Bq = decays per second

²²²Rn Levels

The MicroBooNE Detector

2017 JINST 12 P02017

~10m × 2.5m × 2.3m

Signal backgrounds

²¹⁴Bi \rightarrow ²¹⁴Po + β + N γ

BiPo signal can be faked by other beta-emitting isotope decays

Follow-up studies / improvements

- Follow-up study performed with improved reconstruction and signal selection
- Background determination via side-band

Doping radon into MicroBooNE

W. Foreman / NuFact 2024 @ ANL

Doping radon into MicroBooNE

The original pipe will be cut, a conflat tee will be pressure fit, the source will be added, the tee will be sealed, the system will vacuum pumped, leak checked, and then operated

Radiological survey

Confirmed accumulation of radon in copper filter

- Looked at ratio of dE/dx for segments of ACP tracks near and far from the wire planes
- Confirmed average ~8 ms lifetime (weighted by β candidates over time), consistent with previous estimate from scaling the Bi214 beta spectrum

7					
Time period [hrs]	Far/near dEdx ratio	Equivalent lifetime [ms]			
0-5	1.01(2)	> 180			
5-10	0.940(8)	29 +/- 12			
10-15	0.902(8)	18 +/- 3			
15-20	0.855(11)	12 +/- 2			
20-25	0.828(12)	9.6 +/- 1.8			
25-30	0.820(9)	9.2 +/- 0.5			
30-35	0.776(6)	7.2 +/- 0.5			
35-40	0.758(7)	6.6 +/- 0.6			
40-45	0.735(7)	5.9 +/- 0.4			

Ion mobility in LAr

Some fraction of isotopes are positive ions \rightarrow drift toward cathode at very slow speeds

	Phy	/S	Rev	С	92,	045504
--	-----	----	-----	---	-----	--------

Results from L>	Ke in EXO-200
222Rn → 218Po⁺ v _d ~0.3 cm²/ (kV s)	$f_{\alpha} = 50.3 \pm 3.0\%)$
214Pb → 214Bi+	$f_{\beta} = 76.5 \pm 5.7\%$

Implies that measured Bi→Po rate can't be directly translated to a ²²²Rn rate, as some isotopes will have drifted and plated onto cathode

Figure 8. (Color online) Scatter plot of 218 Po drift distance versus time between the 222 Rn and 218 Po decays. Displacement (Δz) is defined as positive when movement is towards the cathode.

Toy MC assumptions

Decay Daughter	Half-life	Mean lifetime = T _{1/2} / In(2)	lon fraction	Drift speed at 273 V/cm
218Po	3.1 min	4.5 min	37% +/- 3% ^[80]	0.23 cm/s
214Pb	27 min	39 min	Estimated 37%	Estimated 0.23 cm/s
214Bi	20 min	29 min	Estimated 56%	Estimated 0.23 cm/s
214Po	164 us	237 us	Not relevant	Not relevant

- [80] P. Agnes *et al.* (DarkSide), Measurement of the ion fraction and mobility of 218Po produced in 222Rn decays in liquid argon, J. Instrum. 14, P11018 (2019).
- [81] Albert and others (EXO-200 Collaboration), Measurements of the ion fraction and mobility of α - and β -decay products in liquid xenon using the EXO-200 detector, Phys. Rev. C **92**, 045504 (2015).

Converting charge to energy

MicroBooNE + LArIAT: Michel electron showers

For blips, assumed constant dE/dx (i.e., constant recombination)

ArgoNeuT: Nuclear de-excitation γ analysis

 Used NIST data on low-E e⁻, together with recombination, to directly relate Q_{reco} to energy

Energy spectra backgrounds

Simulated energy spectra

Calorimetric validation: α_{Po}

Using NEST-parameterized alpha charge-yield (QY) model https://zenodo.org/record/7577399

Figure 9: Charge yield model comparison with data from Po-210 and Cf-252

W. Foreman / NuFact 2024 @ ANL

Monte Carlo Efficiency

α QY: +/-20%		
	Systematic	Uncertainty
D_{L} : ± 1 σ , D_{T} : ± 30%	Alpha QY	$\pm 43\%$
	Electron diffusion	+26%, -17%
All charge scaled +/-5%	Energy scale	$\pm 15\%$
7	Recombination modeling	\pm 1.9%
'Birks' model, and enhanced	Total	+52%, -49%
recombination fluctuations		
	Final efficiency rate measur	y for BiPo rement:

$$\epsilon = (8.3 \pm 4.2) \%$$

Contributions to efficiency

	Relative probability (NEST)	Relative probability (LArG4)
Volume remaining after 2D cosmic track-masking	~86%	same
Bi214 beta decays producing collection plane hits*	~51%	same
Bi214 blips plane-matched	~62%	same
Po214 alphas producing collection plane hits	~22%	~43%
Total	~6%	~12%

* Using 'low-threshold' reconstruction

Broader implications for SBN / MicroBooNE

Low-energy proton detection for 1g0p background discrimination

Millicharged Particles MicroBooNE Simulation

Beam-induced BSM like millicharged particle signatures

low-E proton (missed by Pandora tracker?)

