# Energy reconstruction and calibration techniques of the DUNE LArTPC

**Praveen Kumar** (on behalf of the DUNE collaboration) The University of Sheffield, UK

NuFact 2024 Argonne National Laboratory, Illinois, United States Sep 16 – 21, 2024



#### Deep Underground Neutrino Experiment (DUNE)



- The DUNE science program includes:
  - Neutrino oscillations
  - Detection of astrophysical neutrinos
  - Beyond Standard Model searches

#### Far Detector (FD)

- At SURF, SD, USA
- LArTPC
- 1.5 km underground
- $4 \times 17$  kt modules

#### **Near Detector (ND)**

- At Fermilab
- 3 components
- LArTPC, GArTPC, non-TPC
- Neutrino beam source



### LArTPC Calibration

- Motivation
  - Calibrate energy scale
  - Energy resolution
  - Low energy reconstruction
- Calibration approach
  - Develop the procedures to determine the detector response which the measurements depend on such as:
    - Electron lifetime, recombination, electron diffusion, electronics/gain
  - Measure detector response to "standard candles"
    - Stopping muons, charged pions, protons
    - Through-going muons
    - $\pi^0$  decay

### **Calibration Sources**

- Existing sources
  - Cosmogenic activities
  - Beam neutrino events
  - Intrinsic radioactive isotopes
- Dedicated calibration systems
  - Ionisation laser system
  - Pulsed neutron source
  - Fixed/injected radioactive sources

### Calibration with Cosmic Muons

- It is free and useful
- ~ 90 cosmic muons stopping per-day/module

#### Cosmic muon events are generated using Muon Simulation Underground (MUSUN) generator

- A total of  $1.85 \times 10^6$  simulated events corresponding to 131 days of DUNE FD data
- ~ 4,800 muons per-day/module
- ~ 33% of generated muons in DUNE FD

#### **Muon Energy Distribution**



•  $< E_{\mu} > = 284$  GeV; busy event activities in DUNE FD

6

- Different from ProtoDUNE ( $\langle E_{\mu} \rangle = 4 \text{ GeV}$ )

#### Reconstruction and identification of $\pi^0$

- $\pi^0$  invariant mass is a standard candle
- Useful for calibrating the detector to electromagnetic activity response
- Also, a background to the  $v_e$  appearance signal
  - A thorough analysis is required for the identification of such events

- $\pi^0 \rightarrow 2\gamma$
- The  $(\gamma, \gamma)$  invariant mass is given by:

 $m_{\pi^0} = \sqrt{2E_1E_2(1-\cos\theta)}$ 

(where  $E_1$  and  $E_2$  are the photon energies and

 $\theta$  is the angle between the two photons)



### Reconstructed $\pi^0$ Mass

- Based on simulation, performance cuts are applied as follows:
  - The number of reconstructed showers hits >100
  - Reconstructed opening angle > 20 degrees
- 156  $\pi^0$  events
- 104 days of data taking in single module



- Gaussian fit applied within a range [20, 250] MeV/c<sup>2</sup>
- > Extracted gaussian mean consistent within the statistical uncertainty of 5% of true  $\pi^0$  mass

### Energy Calibration of DUNE FD

- Using stopping muons
  - Well-understood energy loss profile
  - Can be used as an absolute energy scale
  - Can be used for electron-ion recombination measurements
- 371,000 simulated cosmic muon events
- 26 days of data at DUNE
- 2,169 stopping muons in DUNE
- Energy calibration methods:
  - Model dependent: modified box model
  - Model-independent: absolute energy scale



#### dE/dx Calibration

 Calibration is performed to convert ionisation electrons into measurable dE/dx



#### **Modified Box Model**

- Precise dE/dx measurement is required for the cross-section and Bragg peak measurement for muons, pions, and protons
- Formula developed by ArgoNeut which is a modification of Birks' law

$$\left(\frac{dE}{dx}\right)_{\text{calibrated}} = \left(\exp\left(\frac{\left(\frac{dQ}{dx}\right)_{\text{calibrated}}}{C_{\text{cal}}}\frac{\beta'W_{\text{ion}}}{\rho\mathscr{E}}\right) - \alpha\right)\left(\frac{\rho\mathscr{E}}{\beta'}\right),$$

 $\left(\frac{dQ}{dx}\right)_{calibrated}$ : Charge per step as reconstructed on the wire, calibrated for the effects such as  $e^-$  lifetime correction

 $C_{cal}$ : Calibration constant used to convert from wire response (ADC\*tick) to electrons

 $\xi$ : Local electric field

 $W_{ion}$ ,  $\rho$ ,  $\alpha$ ,  $\beta'$  are constants measured previously [1]

Measurements are needed for  $C_{cal}$ ,  $\xi$  to convert  $\frac{dQ}{dx}$  to  $\frac{dE}{dx}$ 

[1] JINST 8(2013) P08005

#### dE/dx Calibration Method

Utilise cosmic stopping muons at high residual ranges, as their dE/dx is well-defined with less than 1% theoretical uncertainty based on the Landau-Vavilov theory [2]

- For each track, residual range (distance from the end of the track) of 200 cm is considered
- Selected tracks are divided into small residual range bins and the most probable value (MPV) of each dE/dx distribution is determined
- Use residual range (120 200 cm) which correspond to the minimum ionising region
- Use a  $\chi^2$  optimisation to measure  $C_{cal}$
- $C_{cal} = 5 \times 10^{-3} \text{ADC} \times \text{tick/e},$ if the detector is perfectly modelled
- Minimum  $\chi^2$  corresponds to final  $C_{cal}$

$$\chi^2 = \sum \left( \frac{(\text{MPV}(dE/dx)_{\text{prediction}} - \text{MPV}(dE/dx)_{\text{measured}})^2}{\sigma^2} \right)$$



Example of dE/dx distribution fitted with Landau convoluted Gaussian function

• 5 cm residual range bin

#### $\chi^2$ vs. Calibration Constant



For statistical uncertainty:  $\chi^2 - \chi^2_{min} = 1$ 

 $C_{cal} = (5.469 \pm 0.003) \times 10^{-3} \text{ ADC} \times \text{tick/e}$ 

#### Measured and Theoretical dE/dx



 $C_{\rm cal} = (5.469 \pm 0.003) \times 10^{-3} \,\text{ADC} \times \text{tick/e}$ 

- Good agreement with the theoretical prediction at higher residual range and kinetic energy
- Reconstruction bias at the end of the track

#### Absolute energy scale

- Convert dQ/dx to dE/dx without biasing the empirical model
  - Independent of any modelling
  - Independent of any parameters from other experiments
- 5 cm residual range bin
- For each residual range bin, the dQ/dx distribution is fitted to a Landau-Gaussian distribution
- Determine the MPV of dQ/dx for each residual range bin



### Scaling dQ/dx to dE/dx

- Ratio (dE/dx)<sub>theoretical</sub> / (dQ/dx)<sub>reconstructed</sub> for each 5 cm bin of residual range is calculated
- The ratio vs. residual range is fitted with an empirical function.



#### Measured and theoretical dE/dx

- 5 cm bin for residual range 0 to 200 cm.
- Using the equation obtained from the fit, reconstructed dE/dx is obtained from reconstructed dQ/dx values



Reconstructed dE/dx show good agreement with theoretical prediction even in the low kinetic energy and residual range

#### dE/dx reconstruction of stopping charged pions

- 9298 stopping charged pions
- Using the same absolute energy scale method used for stopping muons
  - 5 cm bin size for residual range 0 to 10 cm
  - 10 cm bin size taken for the residual range 10 to 150 cm



Reconstructed dE/dx show good agreement with theoretical prediction, even in the low kinetic energy and residual range

#### dE/dx reconstruction of stopping protons

- $5.43 \times 10^4$  stopping protons
- Using the same absolute energy scale method used for stopping muons
  - 2 cm bin size for residual range 0 to 10 cm
  - 10 cm bin size taken for the residual range 10 to 100 cm



Reconstructed dE/dx show good agreement with theoretical prediction

#### Comparison of dE/dx reconstruction

• Stopping muons, charged pions, and protons



- Good agreement between reconstructed and theoretical prediction based on the Landau-Vavilov theory
- At low value bins, difference in theoretical and reconstructed value may be due to inefficient reconstruction at the end of the tracks

#### p/m vs. reconstructed dE/dx

 dE/dx as a function of momentum-to-mass ratio (p/m) is independent of particle type



> Validate the absolute energy calibration method in DUNE FD

# Summary

- Cosmic muon events are produced using the cosmic muon generator MUSUN for the DUNE FD
- Cosmic-ray muons are a valuable source for detector calibration
- $\pi^0$  is useful in calibrating the electromagnetic energy reconstruction
- Two calibration methods using stopping muons are presented which are useful for calibrating DUNE LArTPC
- The energy calibration techniques are validated using stopping charged pions and protons

### Thanks !

# **Backup Slides**

VE

#### Liquid Argon Time Projection Chamber (LArTPC)



- Charge and light production
- LArTPC has excellent imaging, tracking and particle identification capabilities

Reconstructed tracks and showers in LArTPC. Photons produce electromagnetic showers and muons produce long straight tracks

#### **Calibration with Cosmic Muons**

- Cosmic muon events are generated using Muon Simulation Underground (MUSUN) generator
- A total of  $1.85 \times 10^6$  simulated events corresponding to 131 days of DUNE FD data
- ~ 4800 cosmic muons per-day in DUNE FD
- ~ ~ 90 cosmic muons stopping per day in DUNE FD

#### **Statistics**

| Characterisation                     | Total number         | Per day            | Fraction [%]    |
|--------------------------------------|----------------------|--------------------|-----------------|
| Total generated events               | $1.85 \times 10^{6}$ | $1.41 \times 10^4$ |                 |
| Primary $\mu$ in TPC                 | $6.24 \times 10^5$   | $4.76 \times 10^3$ | $33.72\pm0.04$  |
| Any stopping $\mu$ in TPC            | $2.28 \times 10^4$   | 174                | $3.65\pm0.02$   |
| Primary stopping $\mu$ in TPC        | $1.13 \times 10^4$   | 86                 | $1.81\pm0.02$   |
| All Michel electrons in TPC          | $2.01 \times 10^4$   | 153                | $3.21 \pm 0.02$ |
| Michel from primary $\mu$ in TPC     | $6.84 \times 10^3$   | 52                 | $1.10 \pm 0.01$ |
| $\pi^0$ in TPC                       | $2.76 \times 10^4$   | 210                | $4.42\pm0.03$   |
| Events in which $\pi^0$ are produced | $4.89 \times 10^3$   | 37                 | $0.78\pm0.01$   |
| Stopping $\pi^+$ in TPC              | $2.72 \times 10^4$   | 207                | $4.35\pm0.03$   |
| Events in which $\pi^+$ are produced | $4.71 \times 10^3$   | 36                 | $0.75\pm0.01$   |
| Stopping $\pi^-$ in TPC              | $3.15 \times 10^4$   | 240                | $5.04 \pm 0.03$ |
| Events in which $\pi^-$ are produced | $4.90 \times 10^3$   | 37                 | $0.78\pm0.01$   |
| Stopping protons in TPC              | $3.32 \times 10^5$   | $2.53 	imes 10^3$  | $53.20\pm0.09$  |
| Events in which protons are produced | $2.05 \times 10^4$   | 156                | $3.28\pm0.02$   |
| Stopping $K^+$ in TPC                | $1.50 \times 10^3$   | 11                 | $0.24\pm0.01$   |
| Events in which $K^+$ are produced   | $5.66 \times 10^2$   | 4                  | $0.09\pm0.00$   |
| Stopping $K^-$ in TPC                | $6.68 \times 10^2$   | 5                  | $0.11\pm0.00$   |
| Events in which $K^-$ are produced   | $3.38 \times 10^2$   | 3                  | $0.05 \pm 0.00$ |



**DUNE** work in progress

### **Muon Distributions**



100

200

Azimuthal angle [degree]

300

- 6.24  $\times$  10<sup>5</sup> primary  $\mu$  in active volume
- 131 days of data at DUNE FD

•

- Zenith distribution tells us the muons are mostly going downwards
- Azimuthal distribution depicts the surface profile above the DUNE FD

### Theoretical MPV dE/dx

- The kinetic energy and residual range data is obtained from [3].
- For each residual range bin, considering the mid value of the bin, the corresponding theoretical most probable value of dE/dx is calculated
- Based on the Landau-Vavilov theory [4], MPV is calculated

$$\Delta_p = \xi \left[ \ln \frac{2mc^2 \beta^2 \gamma^2}{I} + \ln \frac{\xi}{I} + j - \beta^2 - \delta(\beta\gamma) \right]$$

All symbols and their value from [4]

• The density of argon is calculated at 87 K



[3] https://pdg.lbl.gov/2020/AtomicNuclearProperties/HTML/liquid\_argon.html[4] Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

#### Reconstructed track angle vs. dQ/dx of stopping muons

- The reconstruction capability of a LArTPC is limited for tracks passing parallel to a wire or in the plane containing drift direction and a wire.
- For such tracks, all the charge from the incident particle gets deposited in a single wire thus leading to the poor reconstruction of the deposited charge.
- To avoid geometrical effects, removed tracks with certain track angles:
  - $-115^{\circ} < \theta_{xz} < -60^{\circ} \text{ or } 65^{\circ} < \theta_{xz} < 120^{\circ}$
  - $-105^{\circ} < \theta_{yz} < -83^{\circ} \text{ or } 65^{\circ} < \theta_{yz} < 110^{\circ}$
- Removed broken tracks



The track direction angles  $\theta_{xz}$  and  $\theta_{yz}$  defined in DUNE FD



Average dQ/dx distribution as a function of  $\theta_{xz}$  and  $\theta_{yz}$  in the collection plane. The colour scale represents the average dQ/dx for a track in each bin

Sheffield

# Modified box model

- dE/dx vs. residual range
- Stopping muons



#### Absolute energy scale

- dE/dx vs. residual range
- Stopping muons



# Absolute Energy Scale

- To improve the agreement between theory and reconstruction at low residual range, the variable bin size is considered for stopping muons
  - 2 cm bin for residual range 0 to 16 cm
  - 5 cm bin from residual range 20 to 200 cm
- Help to distinguish muon and pions



- Reconstructed dE/dx show good agreement with theoretical prediction even in the low kinetic energy and residual range
- Smaller range bin have low statistics and higher statistical uncertainty than bigger range bins

#### Absolute energy scale

- dE/dx vs. residual range
- Stopping muons



University of Sheffield

2 cm residual range bin from 0 to 16 cm 5 cm residual range bin from 20 to 200 cm

#### Reconstructed track angle vs. dQ/dx of stopping charged pions

- The reconstruction capability of a LArTPC is limited for tracks passing parallel to a wire or in the plane containing drift direction and a wire.
- For such tracks, all the charge from the incident particle gets deposited in a single wire thus leading to the poor reconstruction of the deposited charge.
- To avoid geometrical effects, removed tracks with certain track angles:
  - $-105^{\circ} < \theta_{xz} < -70^{\circ} \text{ or } 70^{\circ} < \theta_{xz} < 110^{\circ}$
  - $-115^{\circ} < \theta_{yz} < -80^{\circ} \text{ or } 80^{\circ} < \theta_{yz} < 110^{\circ}$
- Removed broken tracks



The track direction angles  $\theta_{xz}$  and  $\theta_{yz}$  defined in DUNE FD



Average dQ/dx distribution as a function of  $\theta_{xz}$  and  $\theta_{yz}$  in the collection plane. The colour scale represents the average dQ/dx for a track in each bin

#### Absolute energy scale (stopping charged pions)



Reconstructed dQ/dx distribution fitted to a Landau function convolved with a Gaussian

### Scaling dQ/dx to dE/dx

- Ratio (dE/dx)<sub>theoretical</sub> / (dQ/dx)<sub>reconstructed</sub> for each 5 cm bin of residual range is calculated
- The ratio vs. residual range is plotted and fitted with a function.



Fit function:

$$f(r) = p_0 + p_1 \times 1/r + p_2 \times r$$

 $\frac{MPV(dE/dx)_{reconstructed}}{MPV(dQ/dx)_{reconstructed}} = p_0 + p_1 \times 1/r + p_2 \times r$ 

r: residual range

| $p_0$                              | <i>p</i> <sub>1</sub>              | <i>p</i> <sub>2</sub>               |
|------------------------------------|------------------------------------|-------------------------------------|
| (6.683 ± 0.042) × 10 <sup>-3</sup> | (2.149 ± 0.350) × 10 <sup>-3</sup> | (-8.031 ± 0.532) × 10 <sup>-6</sup> |

# Absolute Energy Scale

- dE/dx vs. residual range
- Stopping charged pions



Sheffield

#### Reconstructed track angle vs. dQ/dx of stopping protons

- The reconstruction capability of a LArTPC is limited for tracks passing parallel to a wire or in the plane containing drift direction and a wire.
- For such tracks, all the charge from the incident particle gets deposited in a single wire thus leading to the poor reconstruction of the deposited charge.
- To avoid geometrical effects, removed tracks with certain track angles:
  - $-105^{\circ} < \theta_{xz} < -70^{\circ} \text{ or } 70^{\circ} < \theta_{xz} < 110^{\circ}$
  - $-115^{\circ} < \theta_{yz} < -60^{\circ} \text{ or } 60^{\circ} < \theta_{yz} < 110^{\circ}$
- Removed broken tracks



The track direction angles  $\theta_{xz}$  and  $\theta_{yz}$  defined in DUNE FD



Average dQ/dx distribution as a function of  $\theta_{xz}$  and  $\theta_{yz}$  in the collection plane. The colour scale represents the average dQ/dx for a track in each bin

Sheffield

#### Absolute energy scale (stopping protons)



39 Praveen Kumar I Energy reconstruction and calibration techniques of the DUNE LArTPC

### Scaling dQ/dx to dE/dx

- Ratio (dE/dx)<sub>theoretical</sub> / (dQ/dx)<sub>reconstructed</sub> for each 5 cm bin of residual range is calculated
- The ratio vs. residual range is plotted and fitted with a function.



# Absolute Energy Scale

- dE/dx vs. residual range
- Stopping protons

