

Additive manufacturing of 3D-segmented plastic scintillator detectors for particle tracking and calorimetry

Umut KOSE on behalf of 3DET Collaboration

The 25th International Workshop on Neutrinos from Accelerators NuFact 2024, 16-21 September 2024

Why Additive Manufacturing?

- **3D granularity** and **sub-nanosecond time resolution** of plastic scintillator detectors: **particle tracking**, **identification**, and **calorimetry**
- Many experiments are incorporating or developing high granularity plastic scintillator detectors: **larger volumes and finer segmentation**.
- **Challenges** including high costs (production and assembly), long production time, and precision requirements of complex detector geometries, scalability.
- **Additive Manufacturing may offer a solution**

Toward Additive Manufacturing of a SuperCube

- The **3D** printed **DET**ector R&D collaboration: the first 3D printed particle detector with performances comparable to the state of the art
	- 3D printing big volumes in relatively short time
	- Good scintillation performance and high transparency
	- 3D printing simultaneously multi-materials
	- Relatively fast and cheap

Promising solution: **Fused Deposition Modeling (FDM)**

https://threedet.web.cern.ch

Proof of Concept: 3D printing of plastic scintillator

Optimal composition is Polystyrene + pTP + POPOP

[3DET, 2020 JINST 15 P10019](https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10019)

Light output, Cs137 Comparison of technologies

Swiss Federal Institute of Technology Zurich

Attenuation length with 3D printing

- The 3D-printed sample (10 mm x 10 mm x 50 mm) was polished on the outermost surface and wrapped with white teflon
- The scintillator is pretty transparent
- Sparse presence of small air bubbles
- The line-by-line deposition of FDM is also visible
- SiPM directly coupled on one end and Sr⁹⁰ source moving at different positions

The scintillator transparency was found to be sufficiently good for few-cm granularity detectors

[3DET, 2022 JINST 17 P10045](https://iopscience.iop.org/article/10.1088/1748-0221/17/10/P10045)

3D Printing Optically Isolated Scintillator Cubes layer

Polymer pellets

Reflective pigment TiO2 (or BaSO4, MgO...)

Reflective filament

Reflector filament: 20% Ti02 in weight mixed with PMMA

- We could s**uccessfully 3D print two material simultaneously** and produce a **matrix of optically isolated scintillator cubes**
- **3x3 matrix layer** with scintillator voxels of 10 mm cube and 1 mm thick reflector walls
	- **Caveats:** outermost surface not very precise due to the melting of the material at high temperatures and some reflector remnants in scintillator!

[3DET, 2022 JINST 17 P10045](https://iopscience.iop.org/article/10.1088/1748-0221/17/10/P10045)

U.Kose NUFACT 2024

EIFI 5
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Innovative Progress in 3D printing: Fused Injection Modeling

3D print the mold with FDM Inject melted plastic scintillator

- The desired geometrical shape is preserved by a commercial filament made of white polycarbonate + PTFE heat resistant (~300℃)
- Transmission at 420 nm:
	- 1.2mm thickness (horizontal wall*): ~13%
	- 1.5mm thickness (vertical wall*): ~18%

* Different in filling factors, defined thickness allows to obtain a uniform cube-to-cube light xtalk,

Implementation of Fused Injection Modeling

[3DET, arXiv:2312.04672](https://arxiv.org/abs/2312.04672)

Custom design of the extrusion system (T. Weber, ETH-Z)

- Melting components, heat block and nozzle
- Temperature distribution from CFD: heat block temperature of 300 C, extrusion speed of 15 mm/s

- Plastic scintillator temperature at orifice of ~230 C
- Reflective frame with holes produced via FDM, then metal rods placed through the holes to create circular voids (1.1 mm) for WLS fibers (1 mm)
- Voxel filled rapidly in a bottom-to-top motion

No subtractive process is needed!

3D Printing a Monolithic SuperCube with FDM + FIM

[3DET, arXiv:2312.04672](https://arxiv.org/abs/2312.04672)

Complete 5th layer, UV-light exposed.

- 5x5x5 matrix of scintillating cubes were manufactured accurately with holes to place WLS fibers, very good transparency and optical isolation
- No postprocessing was required
- As reflector commercial filament of polycarbonate + PTFE used

Characterization of Monolithic SuperCube with Cosmic Rays

[3DET, arXiv:2312.04672](https://arxiv.org/abs/2312.04672)

- WLS fibers readout by SiPM on one side
	- Hamamatsu S13360-1325CS with PDE ~ 25%
- CAEN FEB 5702 (FERS, CITIROC ASIC)

Compared with standard scintillator cubes layer *JINST* 16 (2021) 12, [P12010](https://iopscience.iop.org/article/10.1088/1748-0221/16/12/P12010)

First ever 3D printed scintillator-based particle detector capable of tracking and calorimetry

ETH
Eidgenössische Technische Hochschule Zürich ETH Swiss Federal Institute of Technology Zurich

Charged Particle beam tests with SuperCube

- Beam test at CERN T9 to confirm the performance with cosmic and evaluate scintillation light yield uniformity
	- Thanks to ENUBET colleagues for sharing their beam time
- Hodoscope of $(16 X + 16 Y)$ 1 mm square scintillating fibers (Kuraray SCSF-78)

Performance of SuperCube at the Beam Tests

Confirmed the results obtained with cosmic ray data

EIH
Eidgenössische Technische Hochschule Zürich ETH Swiss Federal Institute of Technology Zurich

Advancement on Reflector Filament: Heat Resistant Reflector

Goal: reduce the light crosstalk (lower transmittance) and increase the light yield (higher reflectivity)

We developed a novel polycarbonate-based filament similar to the commercial one but with improved optical properties

Performance @420 nm :

1mm thickness: Refl. ~89%, Transm. ~0.2% 0.2mm thickness: Refl. ~81%, Transm. ~9.4%

Conclusions:

- Successfully demonstrated the use of 3D printing to fabricate plastic scintillator particle detectors with high granularity, and integrated holes for WLS fibers in a single monolithic block, without the need for any subtractive processes.
- Performance comparable to detectors with similar geometries produced using traditional manufacturing processes: cast, extrusion.
- Development is underway on 3D printing a new, heat resistant, high performance white reflector to minimize light crosstalk.
- Developed also 3D printing inorganic scintillator detector, see T. Sibilieva et al. JINST 18 (2023) P03007
- Future plans:
	- Development of SuperCube: Achieving a few mm granularity.
	- Process Engineering: Advancing towards a fully automated 3D printing process.
	- Introduction of Metal Filament: Creating the first 3D printing sampling calorimeter.
	- Optimized 3D printing: Producing plastic scintillators specifically designed for neutron capture.
- For those interested, 3DET is open to collaboration for applications and projects.

The 3d printed DETector (**3DET**) **R&D collaboration** CERN, ETH Zurich, HEIG-VD, ISMA

- The collaboration profiting from expertise in particle detector development, scintillator materials and additive manufacturing
- Ongoing collaboration with IP2I Lyon on muon tomography
- Possibility to extend the collaboration to new institutes focused on specific developments

https://threedet.web.cern.ch

Thank you!

References:

[1] The 3D printed DETector Project:

<https://threedet.web.cern.ch/>

[2] Additive manufacturing of a 3D-segmented plastic scintillator detector for tracking and calorimetry of elementary particles,

[3DET Collaboration, T. Weber et al. arXiv:2312.04672](https://arxiv.org/abs/2312.04672)

[3] Additive manufacturing of fine-granularity optically-isolated plastic scintillator elements [3DET Collaboration, S. Berns](https://iopscience.iop.org/article/10.1088/1748-0221/17/10/P10045) et al. JINST 17 (2022) 10, P10045

[4] A novel polystyrene-based scintillator production process involving additive manufacturing,

[3DET Coll., S. Berns et al.](https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10019) *INST* 15 (2020) 10, 10

[5] Demonstrating a single-block 3D-segmented plastic-scintillator detector,

[A. Boyarintsev et al.,](https://iopscience.iop.org/article/10.1088/1748-0221/16/12/P12010) *JINST* 16 (2021) 12, P12010

[6] 3D printing of inorganic scintillator-based particle detectors

T. Sibilieva [et al., JINST 18 \(2023\) 03, P03007](https://iopscience.iop.org/article/10.1088/1748-0221/18/03/P03007)

Back -up

A single-block 3D-segmented plastic-scintillator detector

- A plastic scintillator is produced
- 1 mm gaps are created in the layer using CNC machining to form a matrix of cubes.
- Gaps are then filled with a white reflective epoxy resin
- Groves along X-Y and hole along Z
- Performance test: three 2D readout view and tyvek sheets to isolate layers; single cladding WLS fibers read out by Hamamatsu S13360-1350CS

Such technique can be scaled up to at least 50x100cm², a single block layer of 5000 optically isolated 1cm³ cubes.

3D printing inorganic scintillator-based particle detector

- For alpha, beta, gamma and X-ray radiation
- T. Sibilieva *et al* 2023 *JINST* **18** P03007
- 3D printed and tested samples from ZnSe:Al, GOS:Pr, GAGG:Ce, CsI:TI

