

Latest results from MicroBooNE's electron neutrino Low Energy Excess search

Fan Gao **University of California - Santa Barbara On behalf of the MicroBooNE Collaboration**

NuFact 2024 Argonne National Laboratory September 19, 2024

MicroBooNE

- A surface-level, 170-ton LArTPC neutrino experiment.
- Exposed to both the BNB and the NuMI beams at Fermilab.
- Primarily designed to investigate the low energy excess (LEE) anomaly observed by MiniBooNE.
- Collected data from 2015 to 2020.
 - World's largest dataset of ν -Ar interactions.
- A part of the Short-Baseline Neutrino (SBN) program at Fermilab.
- Contributes crucial input towards the construction of massive kiloton scale LArTPC detectors for the future DUNE experiment.

LEE Anomaly and MiniBooNE

- MiniBooNE observed a 4.8 σ excess of $\nu_{
 ho}$ candidate events at a low energy range.
 - Neutrino energies ~ 200-800 MeV
 - Forward-going shower angles
- Possible LEE explanations:
 - Electron-like (eLEE) events
 - Energy-dependent ν_{ρ} enhancements?
 - Oscillation-driven excess

Main topic of this talk!

- Photon-like events
 - \rightarrow NC Δ resonance decay?
 - Other mis-modeled or unknown processes?
- BSM models
 - Dark sector e+e- pairs?

Erin Yandel's talk on Monday!

- Phys. Rev. D 103, 052002 (2021)
- MiniBooNE, using an oil Cherenkov detector, cannot differentiate between electrons and photons.

LArTPC Detector

- MicroBooNE's LArTPC is powerful in electron-photon separation.
 - Millimeter spatial resolution and calorimetry.

BNB and NuMI at MicroBooNE

LEE Search: v_e Analysis

- A generic ν_{ρ} selection without assuming underlying LEE physics
- Same topology as MiniBooNE:
 - 1eNp0 π and 1eOp0 π
- An update based on the earlier analysis Phys. Rev. D 105, <u>112004 (2022)</u>
 - Other related MicroBooNE ν_{ρ} LEE search analyses:
 - Multiple final-state topologies Phys. Rev. Lett. 128, 241801 (2022)
 - Inclusive CC ν_e Phys. Rev. D105, 112005 (2022)
 - Inclusive CCQE ν_e Phys. Rev. D105, 112003 (2022)
- First analysis using data from all five runs of MicroBooNE (2015 - 2020)
 - $6.8 \times 10^{20} \rightarrow 11.1 \times 10^{20}$ POT of **BNB data**

FAN GAO (UCSB) NUFACT SEP 19, 2024

Pionless ν_{ρ} LEE analysis:

LEE Search: v_e Sidebands

- Updated ν_{μ} sidebands to better constrain intrinsic ν_{e}
 - Split into $1\mu Np0\pi$ and $1\mu Op0\pi$, to mimic hadronic final states of the ν_e signal channel
- Included an NC π^0 sideband to particularly constrain the dominant π^0 background for 1e0p0 π

LEE Search: v_e Signal Models

• **Signal Model 1** (details in <u>MICROBOONE-NOTE-1043-PUB</u>):

- The same ν_{ρ} -like LEE model was tested in the earlier analysis.
- that describes the reconstructed CCQE electron neutrino energy in MiniBooNE.

Smearing Matrix

- Unfold the MiniBooNE excess in reconstructed neutrino energy using the smearing matrix

- Scale MicroBooNE's intrinsic ν_e flux from BNB to generate the predicted signal excess.

LEE Search: v_e Signal Models

• Signal Model 2 (New):

- Less dependent on CCQE modeling and better match excess in shower kinematics.
- Unfold the MiniBooNE excess reconstructed in 2D shower kinematics (E_{electron} and θ_{electron}).
- Scale true electron kinematics from MicroBooNE's intrinsic ν_{ρ} prediction to generate the predicted signal excess.
- Two signal models are complementary to expand the analysis reach.

LEE Search: v_e Results

- Test MiniBooNE excess under **Signal model 1** neutrino energy-dependent ν_e rate scaling.
 - Data in overall agreement with intrinsic ν_e flux prediction.
 - Rule out this excess model @ 99.5% CL in Np & Op combined channels.
 - Results are mostly driven by the Np channel, and the Op channel is less sensitive due to limited statistics.

LEE Search: ve Analysis

- Expanded investigation of electron-like excess hypothesis:
 - 6.86e20 \rightarrow 11.1e20 POT of data.
 - New constraint of intrinsic ν_e and π^0 backgrounds.
 - Complementary signal hypotheses: neutrino energy, shower energy, and shower $\cos \theta$.
- Results:
 - Data compatible with background-only prediction.
 - Data inconsistent with ν_e -like excess at > 99% CL.
 - Results consistent across kinematic variables tested.
- More details in <u>MICROBOONE-NOTE-1127-PUB</u>

3+1 Sterile Neutrino Search: BNB-Only

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \\ v_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{pmatrix}$$

- Reinterpret LEE ν_e analysis under 3+1 sterile neutrino oscillation framework
 - Simultaneously analyze ν_e appearance and disappearance channels
- MicroBooNE's first 3+1 sterile neutrino search
 - Inclusive ν_e selection using BNB data showed consistency with the 3ν hypothesis.
 - Partially excluded the allowed regions.

BNB and NuMI at MicroBooNE

3+1 Degeneracy Breaking: BNB + NuMI

- 3+1 degeneracy: ν_e disappearance cancels $\nu_\mu \rightarrow \nu_e$ appearance

 - degeneracy!

Degeneracy depends on the ratio of intrinsic rate ν_{μ}/ν_{e} — in BNB ~ 200, in NuMI ~ 25. For the same mixing angles, a large effect in NuMI would be observed. NuMI can break the

3+1 Sensitivity Improvement: BNB + NuMI

Joint 3+1 analysis with BNB + NuMI significantly improves the sensitivity!

- The sensitivity covers the majority of the LSND and the Gallium allowed regions. (More details in <u>MICROBOONE-NOTE-1129-PUB</u> for updated NuMI flux and <u>MICROBOONE-NOTE-1132-PUB</u> for dual-beam 3+1 analysis)

Stay tuned for upcoming results from this analysis!

Summary

- observed by MiniBooNE.
- The first full-dataset ν_e LEE analysis results, with updates in signal models and sideband constraints, are presented, excluding the ν_{ρ} -like excess at > 99% CL.
- 3+1 interpretation of the short-baseline anomalies, with results coming soon.
- Focusing on other LEE interpretations in single-photon and e+e- topologies!

FAN GAO (UCSB) NUFACT SEP 19, 2024

• The MicroBooNE experiment was designed to investigate the nature of the low energy excess

• A novel "Dual-Beam" 3+1 sterile neutrino search provides significantly improved sensitivity in

Thank you!

FAN GAO (UCSB) NUFACT SEP 19, 2024

Backup

LArTPC Detector

- Charged particles ionize the argon atoms and create free electrons, that drift toward the 3-wire planes under an external E-field and induce signals on the wires.
- Light flashes (photons) are detected by PMTs behind the wire planes, giving the interaction timing information.

 MicroBooNE's LArTPC is powerful in electronphoton separation.

- Millimeter spatial resolution and calorimetry.

BNB and NuMI at MicroBooNE

FAN GAO (UCSB) NUFACT SEP 19, 2024

NuMI:

- 8° off-axis
- 95% ν_u / 5% ν_e
- comparable ν and $\bar{\nu}$
- Flux from target and absorber

