# Latest NOvA 3-Flavor Neutrino Oscillation Results



Jozef Trokan-Tenorio On Behalf of the NOvA Collaboration

> NuFact 2024 Working Group 1 September 16<sup>th</sup>, 2024









# The NOvA Experiment



#### NuMI Off-axis v<sub>e</sub> Appearance Experiment (NOvA)



### How We Measure Oscillation Parameters

- The shape of the muon neutrino energy spectrum in the FD tells us about the v2-v3 parameters
- Asymmetry in the rate of electron neutrinos vs antineutrinos tells us about mass ordering and  $\delta_{CP}$
- The mass ordering and value of  $\delta_{CP}$  will serve to either enhance neutrinos and suppress antineutrinos, or vice versa. The effects can add up or cancel each other out.



## The NuMI Beam

- Fermilab's NuMI beam is a horn-focused neutrino beam, with the NOvA detectors situated 14 mrad off-axis to provide a narrow-band beam with energy peaked at 2GeV
- 26.61×10<sup>20</sup> POT neutrino mode (doubled from previous analysis in 2020)
- 12.50×10<sup>20</sup> POT antineutrino mode
- Typical beam power of ~900kw
- New beam power record of 1.018 MW in June 2024



These results comprise 10 Years of NOvA data (2014 - 2023)!

### The NOvA Detectors



#### **Event Topologies For Selection & Energy Estimation**



- Convolutional Neural Networks (CNNs) are used for interaction flavor identification, particle ID, and cosmic rejection. (JINST 11 (2016) P09001).
- Energy estimation is done via tracking for muons, and calorimetry for electromagnetic and hadronic components.

#### Near Detector Events

- Using this process, we select millions of  $v_{\mu}$  , and thousands of  $v_{e}$  candidate events in our near detector.
- With such a large dataset we can understand these unoscillated events well, make corrections, and use them to improve predictions of our far detector events.



## Making Far Detector Predictions



- We use the far-to-near ratio as well as Near Detector Data/MC ratios to correct the Far Detector predictions.
- This accounts for well-understood effects like beam divergence, and detector acceptance differences.
- We then apply the effects of oscillations.
- The resulting constrained FD predictions are highly correlated with the ND corrections.



# Extrapolation Reduces Systematic Uncertainty

The result is a significant reduction in systematic uncertainties, particularly ones that are correlated between detectors such as flux and cross-section (due to the detectors being functionally similar).



Total Systematic Uncertainty Drops ~18%  $\rightarrow$  ~4%

# Binning To Improve Sensitivity

- Bin  $v_{\mu}$  events in 4 quartiles of increasing hadronic energy fraction (proxy for energy resolution).
- $\bullet$  Bin  $v_{\rm e}$  events by purity, with additional peripheral and low-energy samples.



#### Binning $v_{\mu}$ by Hadronic Energy Fraction

#### Binning v<sub>e</sub> by Purity



# New Low-Energy $\nu_e$ Sample



- We have developed a new selection to retain low-energy v<sub>e</sub> events.
- High asymmetry in  $v_e / \bar{v}_e$  appearance at lower energies can improve our mass ordering sensitivity by a few % depending on oscillation parameters.

#### Two Ways to Analyze our Data



- We fit all our samples simultaneously, using either Bayesian or Frequentist techniques.
- We use external constraints on the solar oscillation parameters and consider optional reactor constraints on  $\theta_{13}$ .

Daya Bay Constraint (PRL 130, 161802) <u>1D:</u> sin<sup>2</sup>2θ<sub>13</sub> = 0.0851 ± 0.0024 <u>2D:</u> ( $\Delta m_{32}^2$ , θ<sub>13</sub>)

| Other mixing<br>Darameters: | <b>sin<sup>2</sup>θ<sub>12</sub> =</b> 0.307  | (PDG 2023) |
|-----------------------------|-----------------------------------------------|------------|
|                             | $\Delta m_{21}^2 = 7.53 \times 10^{-5}  eV^2$ | (PDG 2023) |
|                             | $\rho = 2.74 \text{ g/cm}^3$                  | (CRUST1.0) |

# Our Data: $v_{\mu}$ Disappearance



384  $\nu_{\mu}$  Events (2100 expected w/o oscillations)

106  $\bar{\nu}_{\mu}$  Events (500 expected w/o oscillations)

### Our Data: $v_e$ Appearance





 $181 \nu_e$  Events (62 predicted background)

32  $\bar{\nu}_e$  Events (12 predicted background)

( >4 $\sigma$  signal )

# $\nu_e$ Appearance Observations



- Ellipses show the predicted total  $\bar{v}_e$  event vs.  $v_e$  event counts for different combinations of oscillation parameters.
- The appearance data favors a region with degenerate effects from Mass Ordering and CP violation.
- i.e. We don't see a large asymmetry in the rates of electron neutrinos vs. antineutrinos in our data.

## $\nu_2 - \nu_3$ Sector Results

• For the  $\Delta m_{32}^2$  and sin<sup>2</sup>( $\theta_{23}$ ) measurements, our results are consistent with other experiments and joint results.



#### **NOvA Preliminary**

|                                                      | Frequentist results<br>(w/ Daya Bay 1D θ <sub>13</sub> constraint) |                  |        |                  |  |
|------------------------------------------------------|--------------------------------------------------------------------|------------------|--------|------------------|--|
|                                                      | Norm                                                               | al MO            | Invert | ted MO           |  |
| $\Delta m_{32}^2$ / 10 <sup>-3</sup> eV <sup>2</sup> | +2.433                                                             | +0.035<br>-0.036 | -2.473 | +0.035<br>-0.035 |  |
| sin <sup>2</sup> $\theta_{23}$                       | 0.546                                                              | +0.032<br>-0.075 | 0.539  | +0.028<br>-0.075 |  |
| δ <sub>CP</sub>                                      | 0.88 π                                                             |                  | 1.51 π |                  |  |
| Rejection<br>significance (σ)                        |                                                                    |                  | 1.36   |                  |  |

# $\nu_2 - \nu_3$ Sector Results

#### • Most precise single-experiment measurement of $\Delta m^2_{32}!$



Normal mass ordering

\*Note: NOvA 2024 Bayesian range here differs slightly from frequentist one on previous page

17

### Mass Ordering & CPV Results

- Difficult to disentangle mass ordering and CP violation effects.
- CP Conserving points (π, 2π, 0) are compatible in the Normal MO, but outside the 3-sigma interval in Inverted MO.



**NOvA Preliminary** 

### Mass Ordering and CPV Results

- Our new results are consistent with our previous analysis.
- Improved constraints occupy approximately the same regions.



Note: Results use different choices of reactor constraint.

**NOvA 2020**: 2019 PDG avg 013 **NOvA 2024**: Daya Bay 2023 1D 013

September 16th, 2024

NuFact 2024 | Latest NOvA 3F Oscillation Results | Jozef Trokan-Tenorio

19

#### Mass Ordering and CPV Results

 When compared with other experiments results, we prefer similar regions in the Inverted MO, and different regions in the Normal MO.



 Note: Results use different
 NOvA 2020: 2019 PDG avg θ13
 T2K: 2019 PDG avg θ13

 choices of reactor constraint.
 NOvA 2024: Daya Bay 2023 1D θ13
 T2K+SK: 2019 PDG avg θ13

September 16th, 2024

NuFact 2024 | Latest NOvA 3F Oscillation Results | Jozef Trokan-Tenorio

### Mass Ordering and CPV Results

- Strong synergy with reactor experiment constraints enhance our Normal MO preference.
- Not unexpected, See: Phys. Rev. D 72: 013009, 2005

Another possible way to determine

the Neutrino Mass Hierarchy

Hiroshi Nunokawa<sup>1</sup>,\* Stephen Parke<sup>2</sup>,† and Renata Zukanovich Funchal<sup>3‡</sup>



N.O. preference: 69% prob. (Bayes factor: 2.2) Daya Bay sin<sup>2</sup>2θ<sub>13</sub> only N.O. preference: 76% prob. (Bayes factor: 3.2) Frequentist significance\*: 1.4σ Daya Bay (sin<sup>2</sup>2θ<sub>13</sub>, Δm<sub>32</sub><sup>2</sup>) N.O. preference: 87% (Bayes factor: 6.8) Frequentist significance\*: 1.6σ

\*Frequentist significances computed using Feldman-Cousins procedure thanks to NERSC

# NOvA Results Summary

- Both Frequentist and Bayesian analysis of our data yield similar results.
  - Most precise single-experiment measurement of  $\Delta m^2_{32}$  (1.5% uncertainty) .
  - Data disfavor regions with large  $v_e/\bar{v}_e$  asymmetry and favor regions with degeneracy.
  - Slight Preference for Normal MO (6.8 Bayes Factor, 1.6σ), Upper Octant, CP-conserving  $\delta_{CP}$  values.
  - Reactor experiments provide a strong synergy to enhance sensitivity.
- Future prospects very exciting!
  - Goal of doubling our antineutrino data.
  - Test Beam can provide constraints on energy scales.
  - Lots of other analyses (NSI, Sterile, Cross Sections, ... )

## Thanks for listening!



172. Neutrino Cross Section Measurements in NOvA
Joshua Barrow (UMN, FNAL visitor)
9/18/24, 12:46 PM

53. Electromagnetic Response Studies in the NOvA Test Beam
 ▲ Dalton Myers (The University of Te...
 ④ 9/18/24, 12:10 PM
 173. NOvA/T2K joint fit and NOvA
 ▲ Ryan Patterson (Caltech)

( 9/19/24, 9:00 AM

Plenary session

116. Constructing confidence intervals with Profiled Feldman-Cousins method for NOvA's neutrino oscillation measurement

Andrew Dye (University of Missis... 9/17/24, 5:15 PM 124. Impact of the HF-CRPA Model on Neutrino Oscillation Parameter Measurements in NOvA Amit Pal (National Institute of...

**(**9/16/24, 4:05 PM

Check out some of the other interesting talks being given by NOvA collaborators at NuFact! 123. Seasonal Variation in Cosmic Muon Rate at the NOvA Experiment Amit Pal (National Institute of...

🕓 9/18/24, 12:30 PM

10. Updates and Lessons Learned from NuMI Beamline at Fermilab
 Don Athula Wickremasinghe (Fermilab)
 9/16/24, 1:45 PM

September 16th, 2024

NuFact 2024 | Latest NOvA 3F Oscillation Results | Jozef Trokan-Tenorio

# Backup

September 16th, 2024 NuFact 2024 | Latest NOvA 3F Oscillation Results | Jozef Trokan-Tenorio

# The NuMI Beam



- Neutrinos at the Main Injector (NuMI)
- Beam is 95% (93%) pure when running in neutrino (antineutrino) mode.
  - $^{\rm o}$  4% (6%) wrong-sign and 1% intrinsic beam  $\nu_e$
- NOvA detectors are located 14mrad off-axis to provide a narrow-band energy distribution peaked at 2 GeV



#### What we see in the detectors

- Example of what we see in the far detector.
- Note the high rate of cosmics due to being on the surface.

![](_page_25_Figure_3.jpeg)

#### What we see in the detectors

• By cutting out everything not in time with the 10us beam spill, we reduce our cosmic background and can isolate neutrino event candidates.

![](_page_26_Figure_2.jpeg)

### Simulation Improvements

![](_page_27_Figure_1.jpeg)

Improved light production model (Cherenkov & scintillation) in both detectors, from dedicated bench measurements & in situ stopping muon and proton tracks

![](_page_27_Figure_3.jpeg)

Improved n-<sup>12</sup>C inelastic scattering model Difference between MENATE\_R\* and default Geant4.10.4 informs systematic uncertainty

\* P. Désesquelles, et al., NIM A307 366-373 (1991), Z. Kohley, et al., NIM A682 59-65 (2012)

## Extrapolation Reduces Systematic Uncertainty

#### • Numu uncertainties before/after extrapolation

![](_page_28_Figure_2.jpeg)

### Systematic Uncertainty on Parameters

#### • Systematic uncertainty breakdown on each of the measured oscillation parameters.

![](_page_29_Figure_2.jpeg)

![](_page_29_Figure_3.jpeg)

![](_page_29_Figure_4.jpeg)

#### Summary Table

| Source of Uncertainty   | $\sin^2\theta_{23}$ | $\delta_{CP}/\pi$ | $ \Delta m_{32}^2  \ (\times 10^{-3} \ {\rm eV}^2)$ |
|-------------------------|---------------------|-------------------|-----------------------------------------------------|
| Beam Flux               | +0.00042 / -0.00069 | +0.0012 / -0.011  | +0.00053 / -0.0012                                  |
| Detector Calibration    | +0.0033 / -0.017    | +0.014 / -0.17    | +0.013 / -0.016                                     |
| Detector Response       | +0.00031 / -0.0043  | +0.004 / -0.037   | +0.0016 / -0.0026                                   |
| Lepton Reconstruction   | +0.0027 / -0.0046   | +0.007 / -0.034   | +0.0083 / -0.014                                    |
| Near-Far Uncor.         | +0.0025 / -0.0024   | +0.0072 / -0.043  | +0.0022 / -0.0034                                   |
| Neutrino Cross Sections | +0.0031 / -0.0051   | +0.018 / -0.11    | +0.0058 / -0.011                                    |
| Neutron Uncertainty     | +0.0028 / -0.00075  | +0.0056 / -0.011  | +0.0022 / -0.0041                                   |
| Systematic Uncertainty  | +0.0067 / -0.019    | +0.027 / -0.21    | +0.017 / -0.024                                     |
| Statistical Uncertainty | +0.023 / -0.083     | +0.081 / -0.76    | +0.032 / -0.044                                     |

Table: Summary of uncertainties on Ana2024 frequentist joint best-fit point, evaluated at the NOUO best-fit values i.e.  $\sin^2\theta_{23} = 0.55$ ,  $\delta_{CP}/\pi = 0.88$ , and  $|\Delta m^2_{32}|$  (×10<sup>-3</sup> eV<sup>2</sup>) = 2.43.

# FD Data: Numu energy by $E_{had}/E_v$ quartiles

- Extrapolation procedure is performed in |pt| subpopulations of Ehad/Ev quartiles
- Resolutions range from Q1 6.5% (5.4%) to Q4 12.6% (11.2%) in v ( $\overline{\nu}$ ) mode

![](_page_30_Figure_3.jpeg)

#### Bayesian Bi-Event Plot

#### **NOvA Preliminary**

• Bi Event Posterior probability density (violet) for integrals of  $v_e$ and  $\overline{v}_e$  candidates in FD with one sigma posterior range compared with real data and two sets of hypothesis (Inverted MO and Normal MO ellipses). Each point on ellipse correspond to different value of  $\delta_{CP}$ , all other oscillation parameters were set to the best fit in corresponding MO.

![](_page_31_Figure_3.jpeg)

#### Correlations with Daya Bay

 Daya Bays preferred regions can help us resolve some degeneracies in the NOvAonly measurements

![](_page_32_Figure_2.jpeg)

September 16th, 2024

#### Correlations With Daya Bay

# Without any external constraint from reactor experiments, there's a degeneracy between $\sin^2 \theta_{23}$ and $\sin^2 2\theta_{13}$

![](_page_33_Figure_2.jpeg)

Slide credit: Erika Catano-Mur (Fermilab W&C)

### Correlations With Daya Bay

![](_page_34_Figure_1.jpeg)

Slide credit: Erika Catano-Mur (Fermilab W&C)

# Jarlskog invariant

#### **NOvA Preliminary**

- Jarlskog\* is parameter-independent measure of CP violation
  - J=0 indicates CP conservation regardless of parameterization
  - J≠0 correspondingly indicates CP violation
- Jarlskog posterior shape depends on assumptions
  - Depends on all mixing angles and  $\delta_{CP}$
  - − Uniform prior on  $\delta_{CP}$  not uniform in *J* and vice versa → consider both
  - Use 1D  $\theta_{13}$  constraint from Daya Bay
  - Other parameters constrained sufficiently well to that (reasonable) prior choice does not influence result
- CP conservation (J=0):

June 17, 2024 / NEUTRINO '24

- Strong compatibility w/ posterior in NO, regardless of  $\delta_{\mbox{CP}}$  prior
- Strong tension w/ posterior in IO, but only "uniform in  $\delta_{CP}$ " prior has J=0 outside 3\sigma interval

![](_page_35_Figure_13.jpeg)

Slide Credit: Jeremy Wolcott (Neutrino 2024)

\*See, e.g., PRD 100, 053004