DUNE and T2HK Complementarity: Unlocking Enhanced CP Violation Insights

Masoom Singh

Utkal University and Institute of Physics, Bhubaneswar, India

25th International Workshop on Neutrinos from Accelerators,

September 20, 2024

20th Sept., 2024, NuFact

MOTIVATION

Phys.Rev.Lett. 108 (2012) 171803; Daya Bay Collaboration

 Discovery of non-zero θ₁₃ by Daya Bay led to independent source of CP violation (current precision: 2.8%)

 $\frac{1}{8}\cos\theta_{13}\sin2\theta_{13}\sin2\theta_{23}\sin2\theta_{12}\sin\delta_{\rm CP};$ where $J_{\rm CP}$ is Jarlskog Invariant (invariant under change of basis).

- Conditions for observing CPV-
 - non-degenerate masses
 - mixing angles $\neq 0^{\circ} \& 90^{\circ}$
 - $\delta_{\rm CP} \neq 0^{\circ} \& 180^{\circ}$

$$\Delta P_{e\mu} = \Delta P_{\mu\tau} = \Delta P_{\tau e} = 4J_{CP} \times \left[\sin\left(\frac{\Delta m_{21}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{32}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{13}^2}{2E}L\right) \right]$$

• $J_{\rm CP} =$

PRESENT SCENARIO

- Combined LBL disfavors π at $\sim 1\sigma (3\sigma)$ assuming NO (IO)
- Stronger signature towards CP violation in IO than NO in Nature

This talk explores the effect of current uncertainty in θ_{23} in achieving the maximum possible CP coverage in $\delta_{\rm CP}$ with DUNE and T2HK.

CP COVERAGE AND CP ASYMMETRY

CP coverage denotes the values of true $\delta_{\rm CP}$ (expressed in %) in its entire range of $[-180^\circ, 180^\circ]$, for which leptonic CP violation can be established at $\geq 3\sigma$ C.L.

$$\text{Intrinsic CP Asymmetry } \mathcal{A}_{CP}^{\mu e} = \frac{P_{\nu_{\mu} \to \nu_{e}} - \bar{P}_{\bar{\nu}_{\mu} \to \bar{\nu}_{e}}}{P_{\nu_{\mu} \to \nu_{e}} + \bar{P}_{\bar{\nu}_{\mu} \to \bar{\nu}_{e}}}$$

- DUNE: 480 kt·MW·years of exposure, L = 1285 km, $\rho_{\rm avg} = 2.848$ g/cm³, P.O.T. of 1.1×10^{21} per year.
- T2HK (T2HKK): 2431 kt·MW·years of exposure, L = 295 (1100) km, $\rho_{\rm avg} = 2.8$ g/cm³, P.O.T. of 2.7 ×10²² per year.
- DUNE + T2HK is must to achieve leptonic CP violation at 3σ for at least 75% choices of $\delta_{\rm CP}$ irrespective of the values of θ_{23} .

INTRINSIC (GENUINE) CP ASYMMETRY

• CP asymmetry in vacuum in DUNE for first oscillation maximum (E = 2.5 GeV).

•
$$\mathcal{A}_{CP}^{\mu e} = \frac{P_{\nu_{\mu} \to \nu_{e}} - \bar{P}_{\bar{\nu}_{\mu} \to \bar{\nu}_{e}}}{P_{\nu_{\mu} \to \nu_{e}} + \bar{P}_{\bar{\nu}_{\mu} \to \bar{\nu}_{e}}}$$

• CP asymmetry decreases with increasing value of θ_{23}

INTRINSIC (GENUINE) AND TOTAL CP ASYMMETRY

- CP asymmetry in vacuum (left) and in presence of matter (right) in DUNE for first oscillation maxima (E = 2.5 GeV).
- Due to Earth matter potential, extrinsic or fake CP asymmetry induces.
- CP asymmetry decreases with increasing value of θ_{23}

INTRINSIC AND TOTAL CP ASYMMETRY

- CP asymmetry in vacuum (left) and matter (right) in DUNE for first (top, E = 2.5 GeV) and second (bottom, E = 0.8 GeV) oscillation maxima.
- Vacuum CP asymmetry is three times larger in $\Delta = 3\pi/2$ (second osc. maxima)
- At second osc. max. the size of the δ -dependent interference term is a factor of \sim 3 larger than that at the first osc. max.
- CP asymmetry decreases with increasing value of θ_{23}

$$\mathcal{A}_{\rm CP}^{\mu e} = [\mathcal{A}_{\rm CP}^{\mu e}]_{\rm vac} + \hat{A}[\mathcal{A}_{\rm CP}^{\mu e}]_{\rm mat} + \mathcal{O}(\hat{A}^2) \tag{1}$$

Fix $\sin\theta_{13}\sim 1/7$ and $\sin\theta_{12}\sim 1/\sqrt{3}$ and expand in \hat{A} up to the first order. So,

$$[\mathcal{A}_{\rm CP}^{\mu e}]_{\rm vac} = \frac{-28\alpha\Delta\cos\theta_{23}\sin\delta_{\rm CP}\sin\Delta}{3\sqrt{2}\sin\theta_{23}\sin\Delta + 28\alpha\Delta\cos\theta_{23}\cos\delta_{\rm CP}\cos\Delta}$$
(2)

$$[\mathcal{A}_{\rm CP}^{\mu e}]_{\rm mat} = -\sin^2\theta_{23}(\Delta\cos\Delta - \sin\Delta)\frac{126\alpha\Delta\cos\theta_{23}\cos\delta_{\rm CP}\cos\Delta + 18\sin^2\theta_{23}\sin\Delta}{(3\sin^2\theta_{23}\sin\Delta + 7\sqrt{2}\alpha\cos\delta_{\rm CP}\cos\Delta\sin^2(2\theta_{23}))^2} \quad (3)$$

As θ_{23} decreases \implies denominator increases $\implies A_{\rm CP}^{\mu e}$ becomes smaller \implies less CPV sensitivity At first oscillation maximum, ($\Delta = 3\pi/2$)

$$\mathcal{A}_{\rm CP}^{\mu e} \approx -\frac{7}{3} \alpha \sqrt{2}\pi \cot \theta_{23} \sin \delta_{\rm CP} + 2\hat{A} \,, \tag{4}$$

where $\mathcal{A}_{\mathrm{CP}}^{\mu e}$ decreases as θ_{23} increases

CP COVERAGE

• Why in DUNE there is a deterioration in CP coverage around $\sin^2 \theta_{23} = 0.5$?

- fixed-parameter case does not have any $\theta_{23}-\delta_{CP}$ degeneracy, so no deterioration.
- Marginalization over uncertainty in θ_{23} leads to $\theta_{23} \delta_{CP}$ degeneracy in DUNE due to considerable matter effect.
- Disappearance channel is crucial in DUNE.
- In T2HK, negligible matter effect ensures no $\theta_{23} - \delta_{CP}$ degeneracy.

EXTRINSIC (FAKE) CP ASYMMETRY

•
$$\mathcal{A}_{CP}^{\mu\mu} = \frac{P_{\nu_{\mu} \to \nu_{\mu}} - P_{\bar{\nu}_{\mu} \to \bar{\nu}_{\mu}}}{P_{\nu_{\mu} \to \nu_{\mu}} + \bar{P}_{\bar{\nu}_{\mu} \to \bar{\nu}_{\mu}}} \Rightarrow \mathcal{A}_{CP}^{\mu\mu} \approx \hat{A}_{CP}^{24 \sin^2 \theta_{23} + 7\sqrt{2}(\pi^2 - 4)\alpha \cos \delta_{CP} \sin 2\theta_{23}} + 10^{-10} \sin 2\theta_{23}}$$

- $\mathcal{A}_{CP}^{\mu\mu}$ increases, with increasing θ_{23} , until expansion breaks at $\cos 2\theta_{23} = -6/141$.
- Earth matter potential (V_{CC}) interacts oppositely with ν and ν
 leading to fake CP asymmetry.
- Disapp. is able to fix θ_{23} in δ_{CP} independent manner far from sin² $\theta_{23} = 0.5$.
- Around $\sin^2 \theta_{23} = 0.5$, disapp. faces $(\theta_{23} \delta_{\rm CP})$ degeneracy.

CP COVERAGE

- DUNE faces $\theta_{23} \delta_{CP}$) degeneracy; T2HK has high appearance systematic uncertainties (5%).
- DUNE + T2HK is must to achieve leptonic CP violation at 3σ for at least 75% choices of δ_{CP} .
- Lower appearance systematic uncertainties in DUNE (2%) and negligible matter effect in T2HK complements each other in achieving better CP coverage.

Eur.Phys.J.C. 83 (2023) 8,694

 DUNE + T2HK can achieve more than 75% CP coverage even with half of their individual exposures.

CP COVERAGE AS A FUNCTION OF EXPOSURE

Eur.Phys.J.C. 83 (2023) 8,694

 $\label{eq:DUNE} {\sf DUNE} + {\sf T2HK} \mbox{ can achieve more than 75\% CP coverage even with half of their individual exposures in all the three scenarios.}$

CP COVERAGE AS A FUNCTION OF RUNTIME

- LO
 - T2HK choice of $[2.5\nu, 7.5\bar{\nu}]$ is best
 - DUNE only ν mode works best. $\delta_{\rm CP}$ independent measurements of sin² θ_{23} by disapp.
- MM
 - T2HK choice of $[2.5\nu, 7.5\overline{\nu}]$ is best
 - DUNE Balanced runtime necessary as disapp. doesn't help
- HO
 - T2HK choice of $[2.5\nu, 7.5\overline{\nu}]$ is best
 - DUNE $[6.5\nu, 3.5\overline{\nu}]$ is best; disapp. helps but not sufficient

CP COVERAGE AS A FUNCTION OF SYSTEMATICS

- Given improved appearance systematic uncertainties in T2HK (2.7%), T2HK outperforms DUNE (2%) in all the three scenarios.
- If in Nature, both experiments end up achieving \sim 1.5 times higher app. syst. uncert. then DUNE + T2HK remains the only solution to achieve 75% of CP coverage.

Key Takeaways

- Complementarity in DUNE + T2HK can achieve 75% CP coverage, irrespective of mass ordering and θ_{23} in Nature.
- DUNE + T2HK can achieve 75% CP coverage even with half of their individual exposures.
- In DUNE, ($\theta_{23} \delta_{CP}$) degeneracy is responsible for lowering the sensitivity, because of large matter effect.
- In T2HK, higher appearance systematic uncertainties leads to lowering of sensitivity.
- Better appearance systematic uncertainties and wide-band in DUNE; low matter effect and better measurement of intrinsic CP phase in T2HK plays a complementary role in establishing better CP coverage in DUNE + T2HK.

Eur.Phys.J.C. 83 (2023) 8,694

• Under IMO (true), in DUNE, no specific deterioration in sensitivity around $\sin^2 \theta_{23} = 0.5$.

BACKUP-2

Eur.Phys.J.C. 83 (2023) 8,694

- Mild $(\theta_{23} \delta_{CP})$ degeneracy under IMO assumption.
- Appearance event rates are sufficient enough to establish CP violation at a good C.L.

• Projected 5σ discovery of CP violation is achievable for ~ 60% CP phase, irrespective of the MO, octant of θ_{23} , under DUNE + T2HK.

Eur.Phys.J.C. 83 (2023) 8,694