3-Flavour Neutrino Oscillations from the T2K Experiment

Edward Atkin On behalf of T2K

NuFact, ANL

Ed Atkin, NuFact 2024

IMPERIAL

1

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

T2K aims to measure the 6 parameters which describe neutrino oscillation probability

- Three mixing angle, θ_{23} , θ_{13} , θ_{12}
- Two mass splittings: $\Delta m_{32}^2 \Delta m_{13}^2$
- Complex-phase δ_{CP}

Key questions to answer:

- Discovery of CP violation (δ_{cP} not 0 or π)
- Determination of mass ordering ($\Delta m_{32}^2 > 0$?)
- Octant of θ₂₃ (sin²θ₂₃ > 0.5 ?)
- Precise measurements of $\delta_{_{CP}}^{}$, $\theta_{_{23}}^{}$, $\Delta m_{_{32}}^{^{2}}$

Ed Atkin, NuFact 2024

IMPERIAL

2

Neutrino Oscillations at T2K

- Measure neutrino oscillation using muon neutrino and anti-neutrino beams
- ND280 and Super-K are both placed 2.5° away from neutrino beam axis
- Muon (anti-)neutrino disappearance:
 - Location of dip determined by Δm_{32}^2
 - Depth of dip determined by sin²2θ₂₃
- Electron (anti-)neutrino appearance:
 - Leading terms depend on $sin^2\theta_{_{13}}$, $\Delta m^2_{_{32}}$ and $sin^2\theta_{_{23}}$
 - Dependence on $\boldsymbol{\delta}_{_{CP}}$
 - If $\delta_{CP} = \pi/2$ fewer neutrinos than anti-neutrinos
 - If $\delta_{CP} = -\pi/2$ more neutrinos than antineutrinos
 - Important to study both neutrinos and antineutrinos to measure $\delta_{\mbox{\tiny CP}}$

Ed Atkin, NuFact 2024

T2K Analysis Strategy

Develop model from external data, calibration and experimental data.

High-stats **ND constrains systematic parameters** before oscillations. Significantly reduces uncertainty at SK.

Two different Far Detector analyses:

- **Hybrid-Frequentist:** use post-ND fit constraint to throw marginalisation toys, fit oscillation parameters and use Feldman Cousins to construct intervals
- **Bayesian:** jointly fit ND and SK using MCMC to build posterior distributions of all parameters

Ed Atkin, NuFact 2024

Super-Kamiokande

50 kt water-Cherenkov detector

Split into two regions:

- Outer detector rejects background events
- Inner detector events selected for use in analyses

Instrumented with PMTs

As of 2021 Super-K has Gd-doping

- Gd used for neutron capture
- Initially 0.01% Gd-doped
- Now 0.03% Gd-doped
- Primarily for relic neutrino search
- Potential to add neutron tagging for T2K samples in the future!

Ed Atkin, NuFact 2024

SK Data samples

- Selections based on Cherenkov ring PID
 - Muon-like: sharp ring
 - Electron-like: "fuzzy" ring
- Number of decay electrons and number Cherenkov rings
- Energy Reconstruction uses lepton kinematics:

$$E_{reco} = \frac{m_p^2 - m_n^2 - m_l^2 + 2m_n E_l}{2(m_n - E_l + p_l \cos \theta_{\nu l})}$$

• Muon-like samples

- Disappearance channel ($\nu_{\mu} \rightarrow \nu_{\mu}$)
- Most sensitive to $sin^2 2\theta_{23}$, $|\Delta m^2_{32}|$
- Electron-like samples
 - Most sensitive to appearance channel ($\nu_{\mu} \rightarrow \nu_{e}$)
 - Most sensitive to sin² θ_{23} , δ_{CP} , sin² θ_{13} and sign of Δm^{2}_{32}

Study samples in both neutrino mode (FHC) and antineutrino mode (RHC) operations

Ed Atkin, NuFact 2024

SK Data samples: muon-like

Neutrino & Anti-neutrino mode 1Rmu:

- 1 muon-like ring
- 0 or 1 decay electron
- Predominantly CCQE interactions

Neutrino-mode $v_{\mu}CC1\pi$:

- Targeting $v_{\mu}CC1\pi$ interactions
- Higher energy sample, less sensitive to oscillations
- 1 Cherenkov ring and 2 decay electrons
- 2 Cherenkov rings and 1 decay electron

Neutrino₂₀

mode 1Rµ

180

150

120

90

60

30

50 100

Neutrino

0 0

0.5

Nngle [deg]

Ed Atkin, NuFact 2024

IMPERIAL

0.5

8

- Data

Data

T2K Run1-11, 2023 Preliminary

1.5

Best fit

2.5 Reconstructed energy [GeV]

Data

Best Fi

SK Data samples: electron-like

Neutrino & Antineutrino mode 1Re:

- 1 reconstructed e-like ring
- 0 decay electrons i.e. no pions
- Predominantly CCQE interactions

Neutrino mode 1Re1de:

- Targeting $\nu_{\rm e}CC1\pi$ interactions
- 1 e-like ring
- 1 decay electron i.e. 1 pion below threshold

IMPERIAL

Ed Atkin, NuFact 2024

Improvements to the analysis: more data!

- Latest results include several updates and improvements to the analysis.
- Previous analysis included data collected up until 2020.
- Now include "Run 11" collected in December 2021
- Increase of FHC POT by ~9%
- RHC POT the same as previous analysis
- Expect increase in sensitivity due to increased data statistics.

Ed Atkin, NuFact 2024

Improvements to the analysis: new decay electron cut

- First data collected with 0.01% Gd-doping at SK
- Gd neutron capture causes delayed signal which could be mistaken for decay electron
- New cut **removes neutron capture background**: function of number of PMT hits in 50ns after vertex time and time difference but main ring event and secondary event
- Also applied to all pure water runs (where Hydrogen neutron capture has tiny affect)

Complee	Run 11 (0.01% Gd)			
Samples	Old cut	New cut	Δ	
FHC1Re	5	7	40%	
RHC 1Re	-			
FHC 1Re1de	2	1	50%	
FHC 1Rµ	IC 1Rµ 35		0	
RHC 1Rµ	-			
м СС1т	5	5		
νμοστη	6	4	-33%	

Ed Atkin, NuFact 2024

IMPERIAL

11

Improvements to the analysis: SK detector errors

SK detector uncertainties constrained using a fit to atmospheric data

• See Michael Reh's talk!

Improvements to procedure have reduced the overall uncertainty: Single

- Correlations between single-ring and $\nu_{\mu}CC1\pi$ samples
- Uses visible energy information in fit to data
- Removed some external errors, now constrained in the fit

Reduces uncertainty on predictions at SK

Ed Atkin, NuFact 2024

Studying Alternate Models

- Test current systematic model by studying robustness against alternate neutrino interaction models
- Generate mock data by changing MC simulation to use alternate model
- Fit these mock data at Near and Far detectors
- Check impact of alternate model on our results
- Pre-decided thresholds for bias:
 - "Size": Change in the width of 1D 2σ intervals should be no larger than 10%
 - "Syst": Change in central value should be no larger than 50% of systematic uncertainty
- **Example**: suppression in single pion channel seen in the MINERvA results
- New study for this analysis:
 - Low-momentum enhancement for 1Re1de sample
 - Slight change to δ_{CP} interval such that 0 is now included in 90% interval [-3.156, -0.202]

Simulated	Relative to	$\sin heta_{23}$	Δm^2_{32}	$\delta_{ m CP}$
data set				
	Total	-11.7%	33.8%	-2.8%
	Syst.	-25.1%	84.9%	-11.2%
	Size	2.0%	-5.4%	1.0%
Martini 1π	Total	-1.5%	-7.3%	-0.4%
	Syst.	-3.2%	-18.5%	-1.7%
	Size	-0.2%	-1.0%	2.0%
Non CCOF	Total	4.9%	-30.0%	-0.1%
Non-CCQE	Syst.	10.4%	-76.3%	-0.5%
	Size	3.0%	-1.0%	-3.0%
SPP Low- Q^2	Total	6.5%	7.4%	-1.5%
suppression	Syst.	14.1%	18.6%	-6.11%
	Size	2.0%	-1.6%	-2.2%

Ed Atkin, NuFact 2024

v_{μ} disappearance results

Results shown here are using the PDG reactor constraint.

- Best-fit prefers **non-maximal sin**² θ_{23}
- Slight preference for normal ordering and upper octant

Ed Atkin, NuFact 2024

Mass Ordering and Octant

- Can report Bayes Factors for discrete hypotheses
 - Ratio of probability in different hypotheses

	No Reactor Constraint	PDG Reactor Constraint
Mass Ordering	1.7 63% : 37% (NO : IO)	2.3 77% : 33% (NO : IO)
Octant	1.3 57% : 43% (UO : LO)	2.6 72% : 28% (UO : LO)

• No conclusive statements about preferred octant or mass ordering

Ed Atkin, NuFact 2024

v_e appearance results

T2K prefers value of δ_{CP} ≈ -π/2
 Disfavour CP conserving values of 0 and π disfavoured in both orderings

Ed Atkin, NuFact 2024

Jarlskog Invariant

- Jarlskog Invariant measures CP-violation in a parameterisation independent way.
- Used for both Quark and Lepton mixing matrices:

$$J = s_{13} c_{13}^2 s_{12} c_{12} s_{23} c_{23} s_{\delta_{CP}}$$

Where s_{ij} =sin θ_{ij} , c_{ij} =cos θ_{ij} , $s_{\delta CP}$ =sin δ_{CP}
J=0: CP conservation, J≠0: CP violation

- For both NO and IO see preference for $J\neq 0$
 - J = 0 not included in 2σ interval for IO
- Investigate impact of choice of prior on $sin\delta_{\mbox{\tiny CP}}$
 - Doesn't dramatically change conclusion

TZK

Ed Atkin, NuFact 2024

17

Future plans and joint-fits

Ed Atkin, NuFact 2024

New Upgraded Near Detector!

- Replaced section of detector with scintillator cubes sandwiched between two TPCs
- Will enable 3D reconstruction of events
- Lower proton and pion momentum thresholds
- Enable better understanding of neutrino interactions and reduce systematic uncertainties in oscillation analysis!

320kA horn-current

- Magnetic horn current increased from 280kA to 320kA
- Reduces "wrong-sign" component so produces a higher purity (anti-)muon beam

More data!

- Continue to collect data with high power ~750kW neutrino beam over the coming years!
- Joint Analysis with Super-K Atmospherics:
- See Tristan Doyle's talk!
- Joint Analysis with NOvA:
- See Ryan Patterson's talk!

18

Summary

- The T2K experiment has made worldleading measurements of neutrino oscillation parameters
 - T2K favours $\delta_{_{CP}}$ = - π / 2, disfavours 0 and π
 - Slight preference for Normal Ordering and Upper Octant of $sin^2\theta_{_{23}}$
- T2K will continue taking data and has many new analyses to come!
- Near Detector Upgrade now taking data and will enable better understanding of neutrino interactions!

Thanks for listening!

Ed Atkin, NuFact 2024

Neutrino Oscillations

Neutrino mass eigenstates mix with neutrino flavour eigenstates. This mixing is described by the PMNS matrix a 3x3 Unitary matrix.

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

Two flavour approximation*
$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) \sim \sin^{2}(2\theta) \sin^{2}\left(\frac{\Delta m_{ij}^{2}L}{4E}\right)$$

Mixing results in Neutrino Oscillations: probability of changing flavour depends on:

- → Values of the mixing parameters: δ_{CP} , θ_{12} , θ_{13} , θ_{23}
- → Difference in the squares of the neutrino masses: $\Delta m_{ij}^2 = m_i^2 = m_j^2$
- ➔ Energy of the neutrino: E
- \rightarrow Distance travelled by the neutrino (baseline): L

 $c_{ii} = \cos \theta_{ii}$

 $s_{ii} = sin\theta_{ii}$

Neutrino Oscillations at Long-Baseline experiments

LBL experiments measure oscillations by firing a neutrino beam across hundreds of kms.

- Can use a muon neutrino beam: v_{μ}
- Can use a anti-muon neutrino beam: $\overline{\nu}_{\mu}$

Measure neutrinos before oscillations with Near Detector and after with Far Detector.

Ed Atkin, NuFact 2024

IMPERIAL

23

Muon-Neutrino Disappearance

- Leading Order dependence on $sin^22\theta_{23}$ and $\Delta m^2{}_{32}$ as well as L/E
- If $sin^22\theta_{23}=1$ then maximal muon neutrino disappearance

Ed Atkin, NuFact 2024

Electron-Neutrino Appearance

- Sensitive to $\sin^2\theta_{23}$, $\sin^22\theta_{13}$, δ_{CP} , magnitude and sign of Δm^2_{32}
- Opposite impact of matter effects and δ_{CP} for neutrinos and anti-neutrinos:
 - $\delta_{_{CP}} = \pi/2 (90^\circ) \rightarrow \text{fewer neutrinos, more anti-neutrinos}$
 - $\delta_{_{CP}} = -\pi/2$ (270°) \rightarrow more neutrinos, fewer anti-neutrinos

Important to study neutrinos and antineutrinos!

ΤΜΡΕΝΤΑΙ

Ed Atkin, NuFact 2024

Comparison to previous results

Ed Atkin, NuFact 2024

Comparison to previous results

Can see impact of different changes to the analysis.

Impact of new data and new SK detector matrix are similar.

Ed Atkin, NuFact 2024

Neutrino interaction modelling

- Important to understand how neutrino interact otherwise we can't accurately reconstruct neutrino energy
- Interactions occur within a nucleus, propagation of particles through nucleus also needs to be modelled. Commonly referred to as Final State Interactions (FSI)
- At T2K energies, Charged Current (CC) Quasi-Elastic (QE) interactions are most dominant type, significant number of multi-nucleon interactions (2p-2h) and resonant pion production (RES). Some Deep Inelastic Scattering (DIS)
- T2K uses the NEUT (5.4.0) neutrino event generator for simulations
- Prior uncertainties motivated by external data sets (e.g. bubble chamber data) and theory

Ed Atkin, NuFact 2024

Goodness of Fit checks

Use posterior predictive p-values (PPP)

Compare likelihood best fit to data and fluctuated predictions

A good PPP is around 0.5

Good PPPs for total and individual samples

SK Sample	p-value		
FHC 1Rmu	0.33		
RHC 1Rmu	0.83		
FHC $\nu_{\mu}CC1\pi$	0.43		
FHC 1Re	0.12		
RHC 1Re	0.64		
FHC 1Re 1de	0.73		
Total	0.51		

Ed Atkin, NuFact 2024

New decay electron cut

• Also small impact on the data collected with pure water due to n-capture on Hydrogen

Samples	Run 1-10 (Pure water)		Run 11 (0.01% Gd)			
	Old cut	New cut	Δ	Old cut	New cut	Δ
FHC1Re	99	99	0	5	7	40%
RHC 1Re	20	20	0	-		
FHC 1Re1de	14	14	0	2	1	50%
FHC1RMu	335	337	-1%	35	35	0
RHC1Rmu	140	140	0	-		
NumuCC1pi	62	62	0	5	5	
	73	70	-4%	6	4	-33%

Ed Atkin, NuFact 2024

Bi-Event T2K and NOvA

• T2K and NOvA have different baselines and energies so have different sensitivities to oscillation parameters

Ed Atkin, NuFact 2024

Low momentum FHC 1Re1de simulated data

Ed Atkin, NuFact 2024

Neutrino Flux

- Beam produced by colliding protons from J-PARC facility with graphite target
- Many hadrons are produced in collision
- Hadrons focussed by series of magnetic horns
- These hadrons (mainly π , K) **decay** to produce neutrinos
- Ideally we would like a pure muon (anti-)neutrino beam
- Can run in neutrino mode and anti-neutrino mode by changing direction of field in horns
- Proton beam and neutrino beam are measured by a series of **beamline monitors**
- External constraints on production of hadrons on/in target used from **NA61 experiment**

Proton

beam

Replica-Target Data

90 cm

Ed Atkin, NuFact 2024

TMPERI

SK flux prediction

Flux predictions at SK for different flavour components for neutrino mode (left) and anti-neutrino mode (right).

Ed Atkin, NuFact 2024

T2K Analysis

- After all of this you end up with a likely hood to evaluate, here θ are your model parameters and D is data

$$-\ln(P(\vec{\theta}|D)) = \sum_{i}^{ND280bins} N_{i}^{ND,p}(\vec{f}, \vec{x}, \vec{d}) - N_{i}^{ND,d} + N_{i}^{ND,d} ln[N_{i}^{ND,d}/N_{i}^{ND,p}(\vec{f}, \vec{x}, \vec{d})] + \sum_{i}^{SKbins} N_{i}^{SK,p}(\vec{f}, \vec{x}, s\vec{k}d, \vec{o}) - N_{i}^{SK,d} + N_{i}^{SK,d} ln[N_{i}^{SK,d}/N_{i}^{SK,p}(\vec{f}, \vec{x}, s\vec{k}d, \vec{o})] + \frac{1}{2} \sum_{i}^{Osc} \sum_{j}^{Osc} \Delta o_{i}(V_{o}^{-1})_{i,j} \Delta o_{j}$$

$$+ \frac{1}{2} \sum_{i}^{Osc} \sum_{j}^{Osc} \Delta f_{i}(V_{f}^{-1})_{i,j} \Delta f_{j} = \mathbf{Flux}$$

$$+ \frac{1}{2} \sum_{i}^{Suc} \sum_{j}^{Suc} \Delta x_{i}(V_{x}^{-1})_{i,j} \Delta x_{j}$$

$$+ \frac{1}{2} \sum_{i}^{Suc} \sum_{j}^{\Delta a_{i}(V_{a}^{-1})_{i,j} \Delta x_{j}$$

$$+ \frac{1}{2} \sum_{i}^{Dsc} \sum_{j}^{\Delta b_{i}(V_{a}^{-1})_{i,j} \Delta d_{i} \quad ND280$$

$$+ \frac{1}{2} \sum_{i}^{Suc} \sum_{j}^{Suc} \Delta skd_{i}(V_{skd}^{-1})_{i,j} \Delta skd_{j} \quad SK$$

$$Detector$$

$$Detector$$

Ed Atkin, Nufact 2024