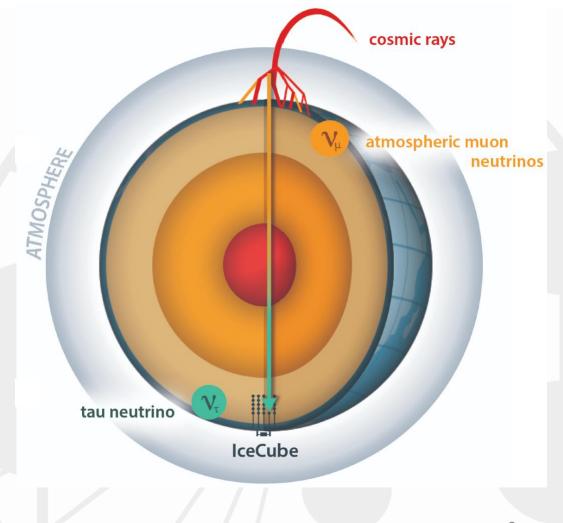


Atmospheric Oscillations with the IceCube Upgrade

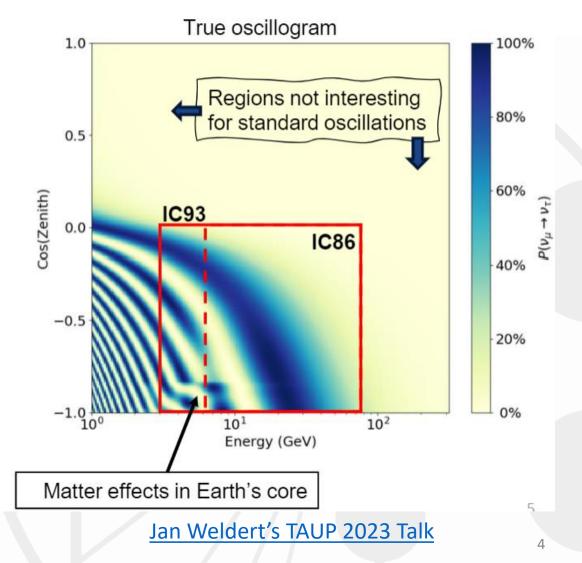
Josh Peterson on Behalf of the IceCube Collaboration NuFact 2024 9/17/2024



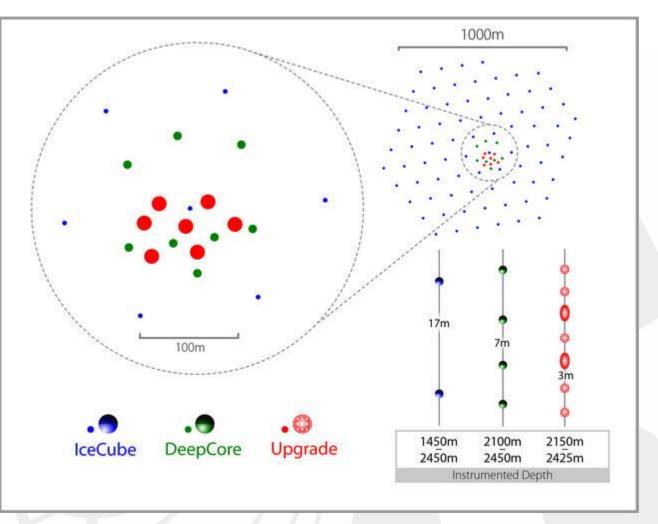
Oscillations with IceCube

- Muon neutrinos and electron neutrinos produced in the atmosphere travel through the Earth
- During travel, there is a chance that the muon neutrinos may oscillate into tau neutrinos

•
$$P_{\nu_{\mu} \to \nu_{\tau}} \approx \cos^4(\theta_{13}) \sin^2(2\theta_{23}) \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)$$


- Muon neutrinos and tau neutrinos produce different event topology, and thus IceCube can measure muon neutrino disappearance
 - Track like topology for muon neutrinos undergoing charged current interactions
 - Cascade like topology for other flavors and interactions

IceCube Upgrade Motivation


- Current energy threshold in IceCube DeepCore is about 5 GeV (shown by the dashed line in the plot)
 - For more information about IceCube Deepcore and current analyses refer to Finn Mayhew's talk
- Lowering the energy threshold of the IceCube detector would push deeper into a region of parameter space interesting to standard oscillations and matter effects
- The best way to probe lower energies more effectively is to more densely instrument the Antarctic lce
 - Would also increase number of neutrinos detected

IceCube Upgrade

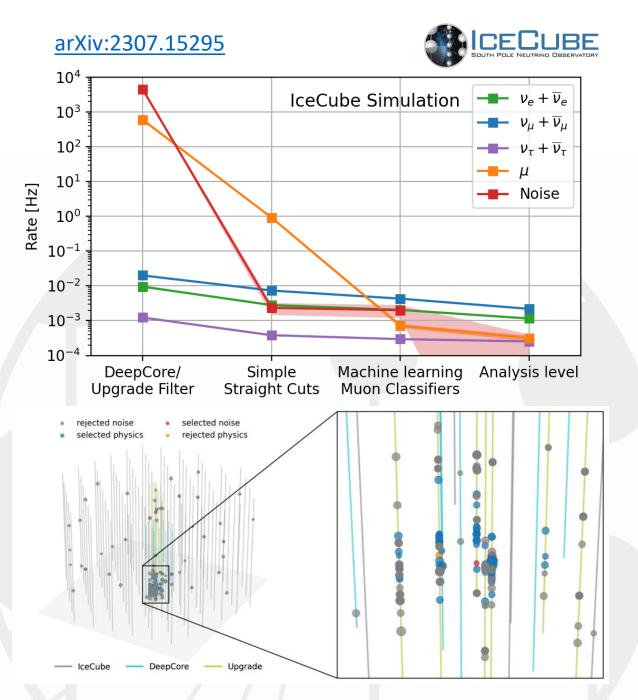
- Install seven new strings densely packed within IceCube DeepCore
 - Deployment will be in the 2025/2026 Antarctic summer season
- Each string is roughly five times more densely instrumented than the standard lceCube strings
- Utilize digital optical modules (DOMs) that utilize multiple PMTs facing many directions
- Also introduce new instruments for better calibration

arXiv:1908.09441

IceCube Upgrade Hardware

• <u>mDOM</u>:

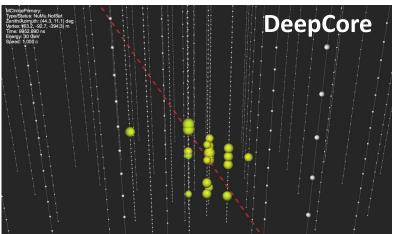
- 24 3-inch PMTs facing all directions
- About 400 to be deployed

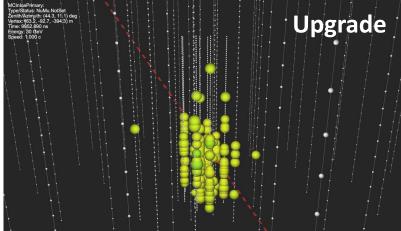

• <u>D-Egg</u>:

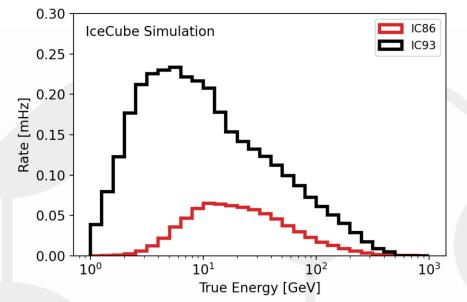
- 2 8-inch PMTs facing down and up
- 2.8 times higher photon sensitivity than existing DOMs
- About 280 to be deployed
- Additional optical modules will be implemented for R&D purposes
- A series of calibration devices will also be implemented in order to improve our understanding of the optical properties of the Antarctic ice

Event Selection

- Background from PMT noise and atmospheric muons dominates what is seen in the detector
 - Need an event selection to suppress the background
- With this event selection we have a sample that is neutrino dominated
- Graph Neural Network (GNN) based noise selection reduces noise hits by 95% while retaining 90% of physics hits

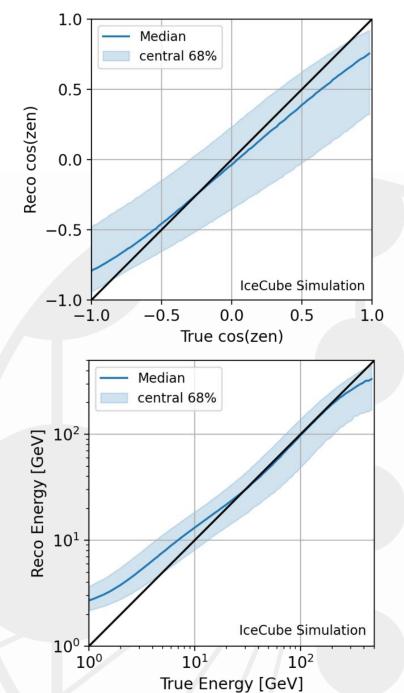





IceCube Upgrade Advantages

arXiv:2307.15295

- Peak of energy distribution shifts down from about 10 GeV to about 5 GeV
- 3 to 5 times more neutrino events at the analysis level than with IceCube DeepCore
 - More events for all energies from 3 GeV to 300 GeV
- More photon hits per event, which leads to better reconstruction and classification



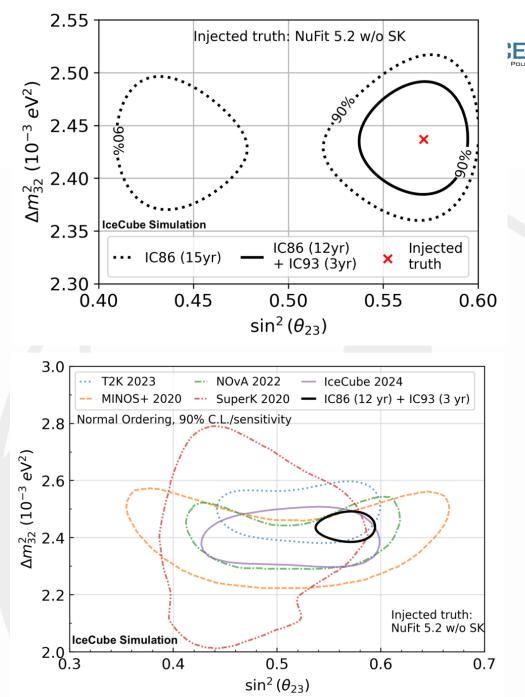
Flavor	IC86	IC93
$ u_{\mu} + \overline{ u_{\mu}} $	0.76 mHz	4.3 mHz
$v_e + \overline{v_e}$	0.25 mHz	2.0 mHz
$ u_{ au} + \overline{ u_{ au}} $	0.05 mHz	0.3 mHz

Reconstruction and Classification

- Train a GNN for each observable
- Event Topology (PID)
 - Achieves an area under the ROC curve of 0.82, which is a significant improvement from IceCube DeepCore
- Energy
 - Uniform performance over energy range of interest
- Cos(Zenith Angle)
 - Uniform performance over all zenith angles

Sensitivity Analysis

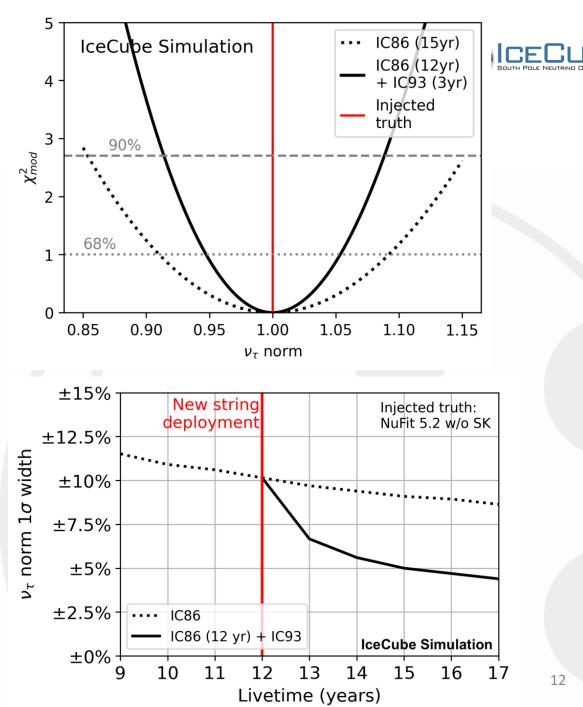
- The sensitivities that will be shown are Asimov sensitivities unless specified otherwise
- There are two detector configurations considered:
 - IC86: The current IceCube detector with DeepCore
 - IC93: IceCube with the IceCube Upgrade
- There are two scenarios considered:
 - 15 years of IC86
 - 12 years of IC86 with 3 years of IC93


	IC86	IC93
Energy	12 Log bins from 5 GeV to 300 GeV	12 Log bins from 3 GeV to 300 GeV
Cos(Zenith)	10 Linear bins from -1.0 to 0.0	10 Linear bins from -1.0 to 0.0

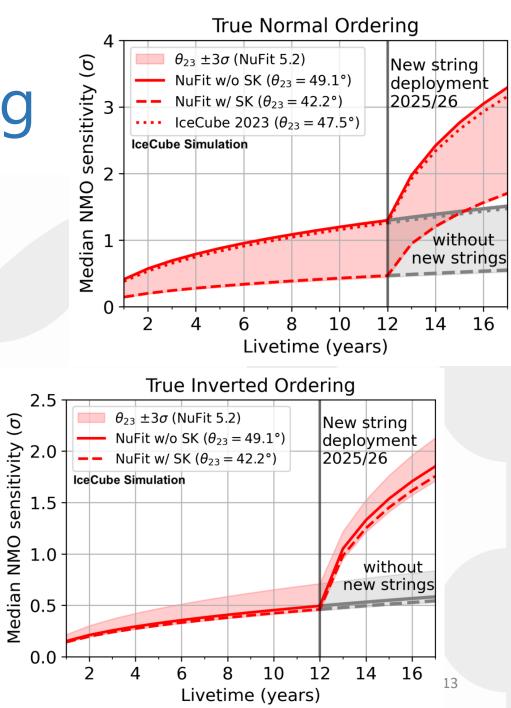
Systematic parameters

Flux	
Spectral index	
Uncertainty on Pion and Kaon production	
Neutrino and Muon Normalizations	
Cross sections	
Deep inelastic scattering uncertainty	
Axial masses for Resonant CC and Quasi-elastic scatteri	ng
Axial masses for Resonant NC and Coherent π scattering	g
Model uncertainty on tau neutrino cross section	
Detector	
Bulk ice properties scattering and absorption	
Optical module efficiencies	
Angular acceptance (IC86 configuration only)	

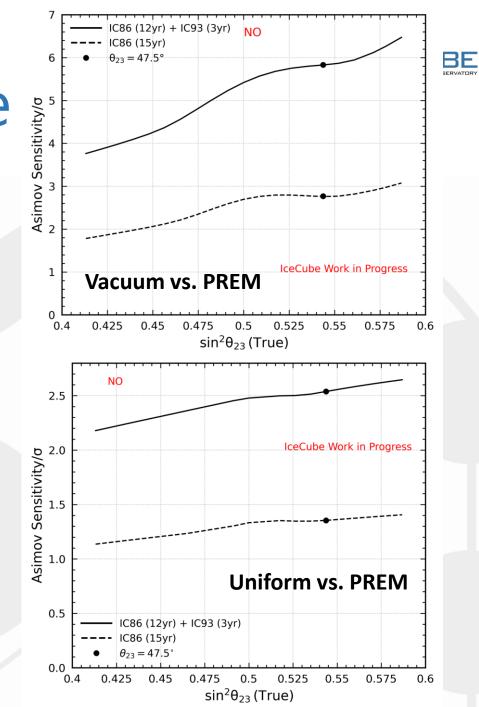
v_{μ} Disappearance


- Measure the oscillation parameters $heta_{23}$ and $\left| \Delta m^2_{32} \right|$
- 90% confidence level region shrinks by 55% to 70% with IceCube Upgrade
- IC93 could exclude maximal mixing from 90% contour and determine the octant of θ₂₃ depending on the true value of θ₂₃
- The constraints to the atmospheric oscillation parameters from IC93 will be among the world's most precise

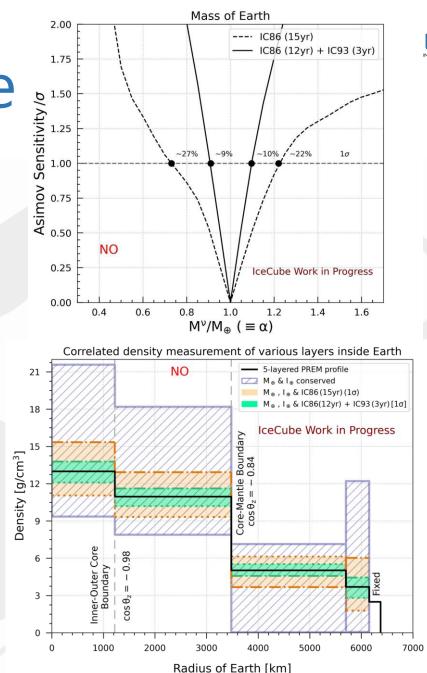
11


ν_{τ} Appearance

- Constrain the number of detected tau neutrinos in our data sample
 - Tau neutrinos would only be in the sample due to oscillations, not present in the atmospheric neutrino flux
 - Number of tau neutrinos is treated as a normalization factor multiplied by the expected number of tau neutrinos
- With the IceCube Upgrade the 1σ uncertainty of the tau neutrino normalization can be reduced by a factor of two


Neutrino Mass Ordering

- Determine whether the normal mass ordering or the inverted mass ordering is preferred
 - Look for low energy matter effects and determine if they are coming from neutrinos or antineutrinos
- The IceCube Upgrade will improve the sensitivity to more than 2σ within a few years
- A sensitivity of 3σ is possible with IC93 for the normal ordering depending on the true value of θ_{23}
- Further improvements expected when combining IC93 with reactor experiments like JUNO


• Verify the existence of matter effects in our neutrino data by comparing a 12 layer PREM

- neutrino data by comparing a 12 layer PREM Earth model to vacuum
 - Could find a preference for matter effects at a 4 to 5σ level with IC93 depending on the value of θ_{23}
- Verify Earth's layered structure by comparing a 12 layer PREM Earth model to a uniform Earth density profile
 - Could verify a preference for layered Earth at a 2.5 σ level with IC93
- Both analyses show significantly improved • results with IC93

Probing Earth's Structure

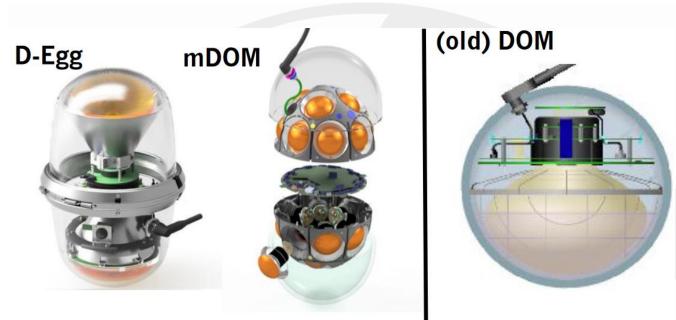
- Use matter effects to measure the mass of the Earth
 - IC93 could measure the mass of Earth with a 1σ precision of 9 to 10%
 - About a factor of 2 increase in precision in the measurement of Earth's mass with IC86
- Use neutrino data to constrain the allowed densities of Earth's layers (while conserving Earth's total mass and moment of inertia)
 - Significant improvement on constraints for all layer densities when using IC93

IBE

Summary

- Next year we will deploy the IceCube Upgrade
- The IceCube Upgrade includes seven more densely instrumented strings, improved digital optical modules, and calibration instruments
- Upgrade analyses will incorporate improved event selection, reconstruction, and classification techniques
- Expect significant improvements to the following measurements:
 - Oscillation parameters θ_{23} and $\left| \Delta m_{32}^2 \right|$
 - v_{τ} normalization
 - Neutrino mass ordering
 - Distinguishing Earth's structure from vacuum and uniform density
 - Earth's mass and the mass of Earth's core

Backup Slides

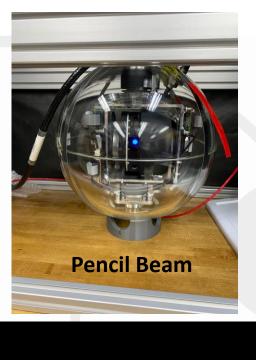

IceCube Upgrade DOMs

• <u>mDOM</u>:

- 24 3-inch PMTs facing all directions
- About 400 to be deployed

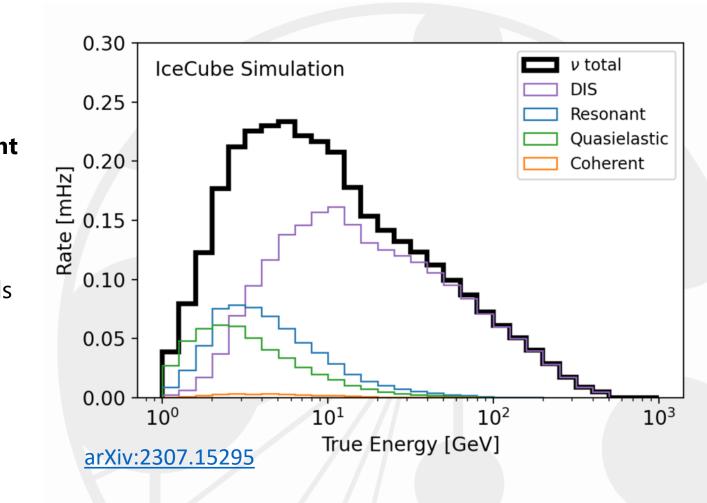
• <u>D-Egg</u>:

- 2 8-inch PMTs facing down and up
- 2.8 times higher photon sensitivity than existing DOMs
- About 280 to be deployed
- DOMs to be deployed in small numbers for testing purposes:
 - pDOM: Same design as current IceCube DeepCore DOMs
 - <u>LOM</u>: prototype for IceCube Gen2
 - <u>WOM</u>: module that uses wavelength shifting paint
 - FOM: fiber optic module

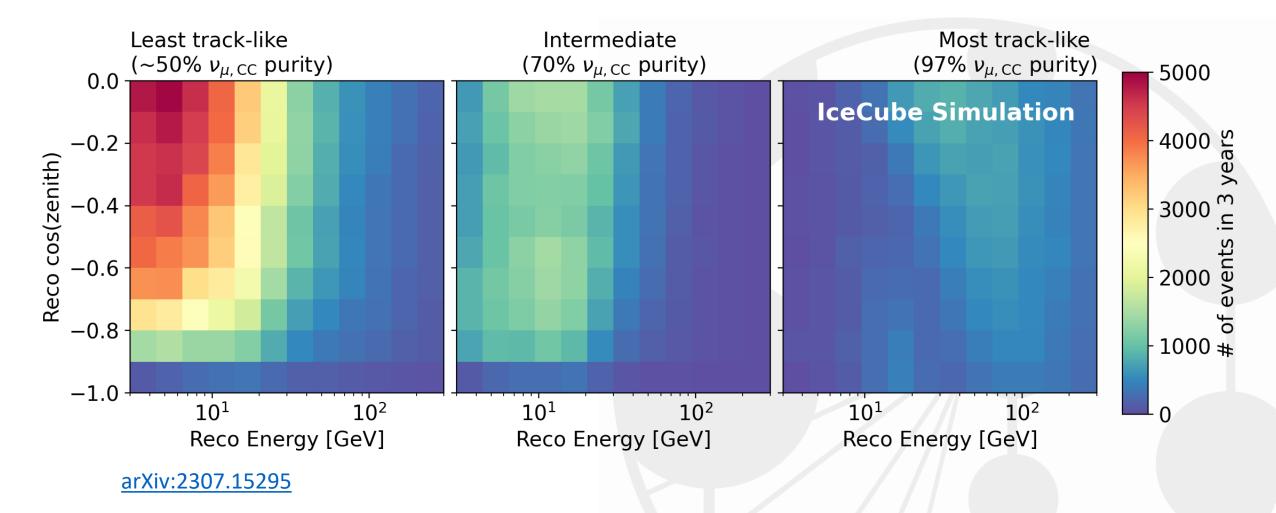


IceCube Upgrade Calibration Instruments

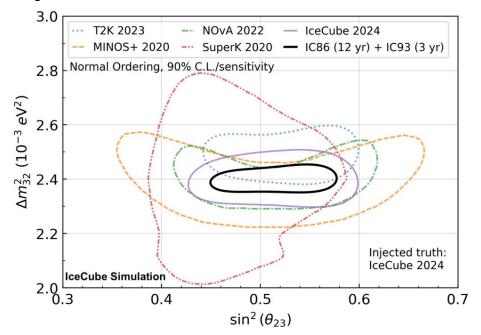
- Instruments for studying the optical properties of the Antarctic ice:
 - <u>Precision Optical Calibration Module</u>: Can emit isotropic nanosecond-long pulses of light
 - <u>Pencil Beam</u>: Can emit beams of light (smaller than one degree) with 8 wavelengths in any direction with a precision of 0.1 degree
- Other instruments to be included consist of acoustic modules, radio pulsers, <u>Swedish</u> <u>Camera devices</u>, and a <u>seismometer</u>

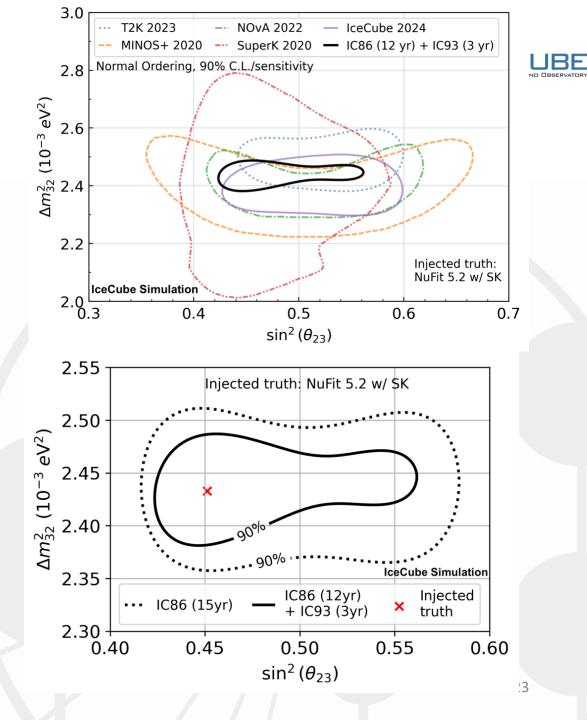

Systematics

Parameter	Nominal	Prior	AOP	$\nu_{ au}$	NMO	
Detector:						
DOM eff. IC86	1.0	± 0.1		free		
DOM eff. ICU	1.0	± 0.05		free		
Ice absorption	1.0	± 0.05		free		
Ice scattering	1.0	± 0.1		free		
Relative eff. p_0	0.10	[-0.6, 0.5]	free			
Relative eff. p_1	-0.05	[-0.15, 0.05]				
Flux:						
$\Delta \gamma_{ u}$	0.0	± 0.1		free		
$\Delta \pi^{\pm}$ yields D	0.0	± 0.3	fixed		free	
$\Delta \pi^{\pm}$ yields G	0.0	± 0.3		free		
$\Delta \pi^{\pm}$ yields H	0.0	± 0.15	free			
$\Delta \pi^{\pm}$ yields I	0.0	± 0.61	free			
ΔK^+ yields W	0.0	± 0.4	free			
ΔK^+ yields Y	0.0	± 0.3	free		fixed	
ΔK^+ yields Z	0.0	± 0.122	fixed		free	
Cross-section:						
M_A^{CCQE} (in σ)	0.0	± 1.0	free			
M_A^{CCRES} (in σ)	0.0	± 1.0	free			
$ \begin{array}{l} M_A & (\mathrm{III} \ \sigma) \\ M_A^{CCRES} & (\mathrm{in} \ \sigma) \\ M_A^{NCRES} & (\mathrm{in} \ \sigma) \end{array} $	0.0	± 1.0	free			
M_A^{coh} (in σ)	0.0	± 1.0	fixed		free	
DIS CSMS	0.0	± 1.0	free		fixed	
ν_{τ} x-sec scale	0.0	[-1.0, +1.0]	fixed		free	
Normalisation:						
A_{eff} scale	1.0	[0.1, 2.0]	free			
Atm. muons:						
Atm. μ scale	1.0	[0.1, 3.]	free			
Oscillations:						
θ_{13}	NuFit5.2	0.11		ed	free	
θ_{23}	NuFit5.2	None	free^*	free	free	
Δm^2_{31}	NuFit5.2	None	free^*	free	free	
ν_{τ} normalization	1.0	None	fixed		fixed	
mass ordering	NO	n/a	fixed		free*	

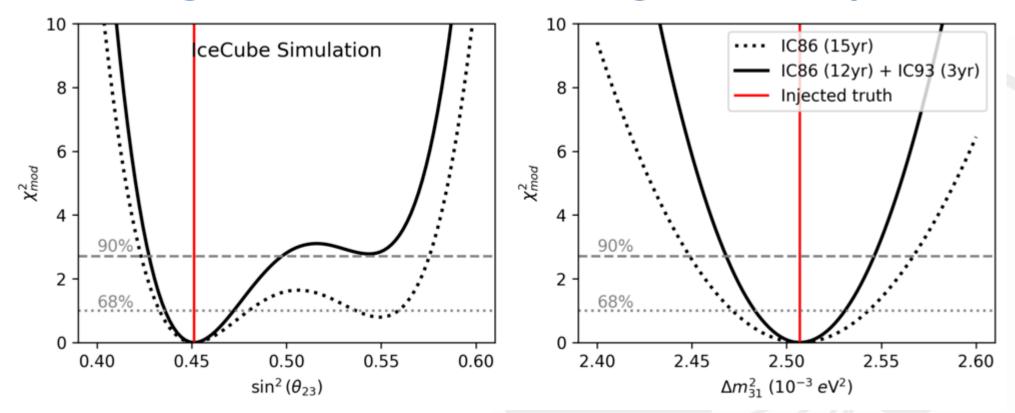

Possible New Systematics

- Detector systematics due to the new module types and improved ice models
- Cross section systematics due to different types of interactions at low energies
- Flux uncertainties for lower energy production
 - Systematics from improved flux models
- Additional oscillation parameters may become non-negligable

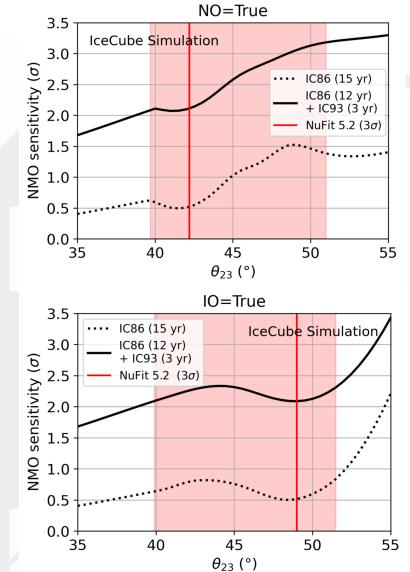



Analyses Bin Counts

 v_{μ} Disappearance


- Similar levels of improvement are shown for different values of θ_{23} with the IceCube Upgrade
- Cannot exclude maximal mixing from 90% contour with NuFit 5.2 w/ SK best fit and the latest IceCube muon neutrino disappearance analysis

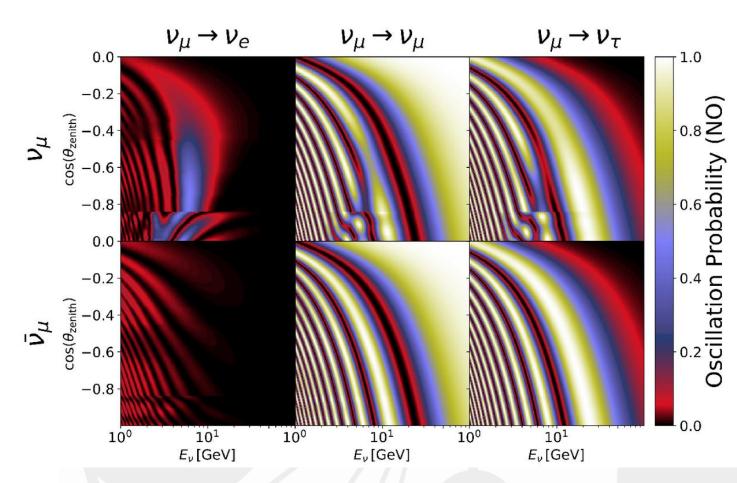
Breaking the Octant Degeneracy



- We can see from the sin²(θ₂₃) sensitivity that one octant is preferred over the other, and that maximal mixing is disfavored
 - This behavior is likely caused by matter effects, since they proportional to $\sin^2(\theta_{23})$

Upgrade NMO θ_{23} Dependance

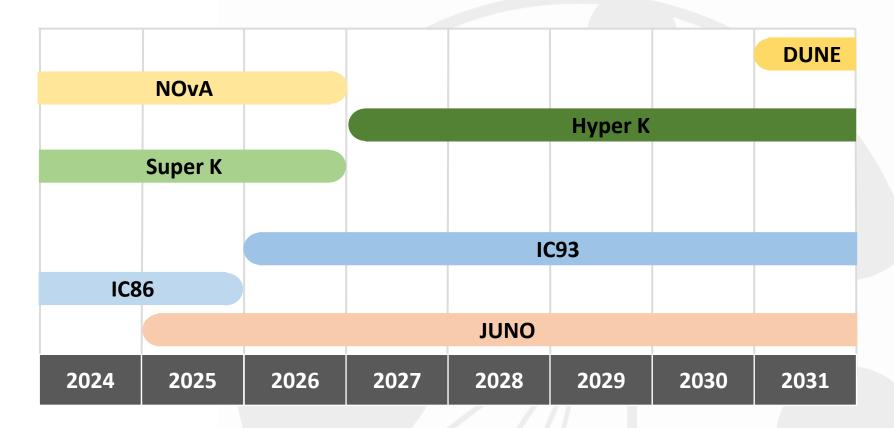
- The bands shown in slide 14 correspond to the values of θ_{23} in the shaded region of the plots shown here
- The true value of θ_{23} has a significant impact on the achievable sensitivity to the NMO



25

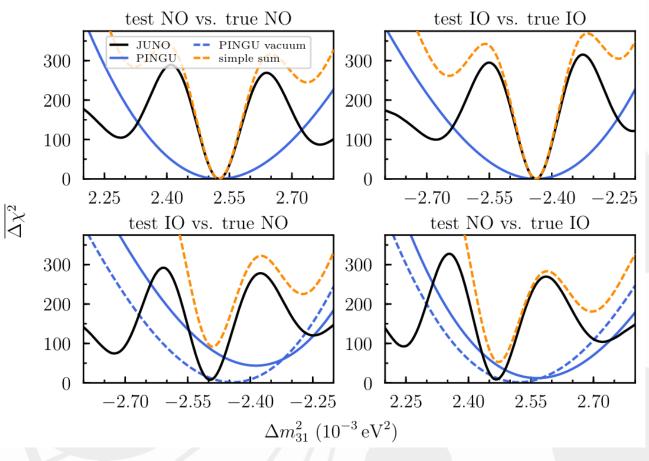
NMO with IceCube DeepCore

- Matter effects will only manifest in the neutrino or antineutrino channel depending on which mass hierarchy is true
- The atmospheric flux contains more neutrinos than antineutrinos
 - Important since IceCube cannot distinguish neutrinos from antineutrinos
- Measure the intensity of the matter effect signal to determine if the matter effects are from the neutrino or antineutrino channel
- For latest results see Finn's talk



Phys. Sci. Forum 2023, 8(1), 7

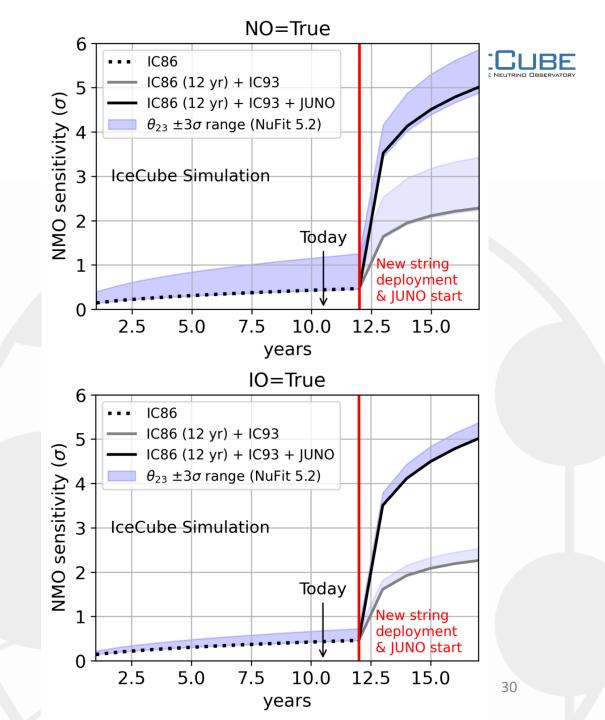
Experiment Timeline


- The IceCube Upgrade will become operational at a time when other oscillation experiments will not be running
- The JUNO experiment will start collecting data shortly before the IceCube Upgrade becomes operational

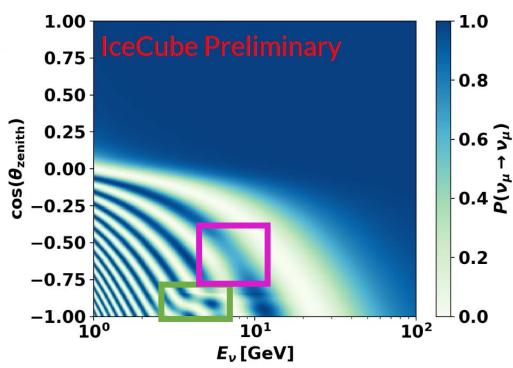
NMO with Upgrade and JUNO

- There is an inherent discrepancy in measurements of |∆m²₃₁| from muon neutrino disappearance and electron neutrino disappearance experiments when assuming the wrong mass ordering
- Any pair of experiments with sufficient precision can take advantage of this discrepancy
 - IceCube Upgrade and JUNO are two such experiments
- Note: The plots shown here utilize PINGU (a proposed low energy extension to IceCube) but the same physics holds true for the IceCube Upgrade

arXiv:1911.06745



IC Upgrade and JUNO Simulation

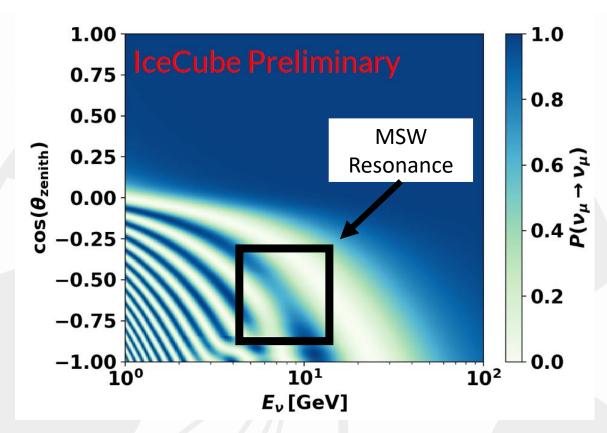

- The best way to take advantage of the discrepancy in measurements of $|\Delta m_{31}^2|$ is to perform a joint fit with both JUNO and IceCube Upgrade
- The joint fit is done by adding the metric values of the two detectors, similar to what is done in a global fit
- Assumptions about JUNO used in simulation from arXiv:1507.05613
 - Utilizes an 8-core JUNO configuration

Upgrade and JUNO

- With just IC93, we can expect to achieve a sensitivity of 2 to 3σ in a few years
 - Depends on the true mass hierarchy and the true value of θ_{23}
- With a joint fit a sensitivity of 5σ could be possible with 3 to 7 years of data
 - For both mass orderings we see a significant improvement when combining the IceCube Upgrade with JUNO

Matter Effects

Earth's matter is full of electrons, which introduces the following potential to the Hamiltonian in the flavor basis:


$$H_m = H_{vac} + V_{CC} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$V_{CC} = \pm \sqrt{2}G_F N_e = \pm 7.6 \times 10^{-14} \times Y_e \left[\frac{\rho}{g/cm^3} \right] eV$$

- Matter effects are only applied to neutrinos or antineutrinos depending on the mass ordering
 - MSW resonance: effective mixing angle is maximized
 - Parametric resonance: for periodic density profiles the oscillation phase is modified, producing large flavor transitions
 - Can be leveraged for studies on neutrino mass ordering, Earth's interior structure, breaking the octant degeneracy of θ₂₃, and studies of physics beyond the Standard Model

Matter Induced v_e Appearance

- Studies that require matter effects (NMO, probing the structure of the Earth) optimize their analyses for regions affected by matter effects
- $P_{\mu e} \approx 4s_{13}^2 s_{23}^2 \frac{\sin^2(A-1)\Delta}{(A-1)^2}$, asymmetric about $\theta_{23} = 45^{\circ}$
- $A = \pm \frac{2E}{\Delta m_{31}^2} (7.56 \times 10^{-14} eV) \left(\frac{\rho(x)}{g/cm^3}\right) Y_e(x)$
- Resonant enhancement of electron neutrino appearance occurs at energies such that $A \approx 1$
 - This matter induced oscillation channel manifests below 20 GeV
 - Note it can only be one if the signs of the potential (neutrinos = +, antineutrinos = -) and Δm^2_{31} multiply to 1

