Neutrino NSI from Ultralight Scalars

Adrian Thompson

with Bhaskar Dutta, Sumit Ghosh, Kevin J. Kelly, Tianjun Li, & Ankur Verma

NuFact 2024 Argonne National Lab

Adrian Thompson

(Northwestern U.)

NuFact 2024 (Argonne Natl. Lab)

SeptembSeptember 12, 2024

Scalar Neutrino Non-standard Interactions (SNSI)

[2401.02107]

$$\mathcal{L}_{\mathcal{S}} = \bar{\nu} \left(i \gamma^{\mu} \partial_{\mu} - m_{\nu} \right) \nu - (y_{\nu})_{\alpha\beta} \bar{\nu}_{\alpha} \nu_{\beta} \phi - y_f \bar{f} f \phi - \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 - \frac{m_{\phi}^2}{2} \phi^2$$

• We consider a light (< keV) to ultralight (<< eV) scalar ϕ

-

Scalar Neutrino Non-standard Interactions (SNSI)

[2401.02107]

$$\mathcal{L}_{\mathcal{S}} = \bar{\nu} \left(i \gamma^{\mu} \partial_{\mu} - m_{\nu} \right) \nu - (y_{\nu})_{\alpha\beta} \bar{\nu}_{\alpha} \nu_{\beta} \phi - y_f \bar{f} f \phi - \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 - \frac{m_{\phi}^2}{2} \phi^2$$

- We consider a light (< keV) to ultralight (<< eV) scalar ϕ
- Phenomenology signatures:
 - Scattering in detector: light recoils $\propto \frac{y_f(y_\nu)_{\alpha\beta}}{q^2 m_{\phi}^2}$ $m_{\phi} << q \rightarrow \frac{y_f(y_\nu)_{\alpha\beta}}{q^2}$
 - Oscillation: in the forward, coherent scattering in-medium: $\rightarrow \frac{y_f(y_{\nu})_{\alpha\beta}}{m^2}$

Scalar Neutrino Non-standard Interactions (SNSI)

[2401.02107]

$$\mathcal{L}_{\mathcal{S}} = \bar{\nu} \left(i \gamma^{\mu} \partial_{\mu} - m_{\nu} \right) \nu - (y_{\nu})_{\alpha\beta} \bar{\nu}_{\alpha} \nu_{\beta} \phi - y_f \bar{f} f \phi - \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 - \frac{m_{\phi}^2}{2} \phi^2$$

- We consider a light (< keV) to ultralight (<< eV) scalar ϕ
- Phenomenology signatures:
 - $\circ \quad \text{Scattering in detector: light recoils} \quad \propto \frac{y_f(y_\nu)_{\alpha\beta}}{q^2 m_{\phi}^2} \qquad m_\phi << q \rightarrow \frac{y_f(y_\nu)_{\alpha\beta}}{q^2}$
 - Oscillation: in the forward, coherent scattering in-medium: $\rightarrow \frac{y_f(y_{\nu})_{\alpha\beta}}{m^2}$
- matter effect in DUNE long-baseline beam neutrino oscillations

Scalar or Vector NSI?

[forward limit] $\mathcal{L}^6_{\mathcal{S}} \supset \frac{(y_{
u})}{r}$

 $\mathcal{L}_{\mathcal{S}}^{6} \supset \frac{(y_{\nu})_{\alpha\beta} y_{f}}{m_{\phi}^{2}} (\bar{f}f) (\bar{\nu}_{\alpha} \nu_{\beta})$

See e.g. Ge, Parke 1812.08376 Smirnov, Xu 1909.07505

Scalar or Vector NSI?

See e.g. Ge, Parke 1812.08376 Smirnov, Xu 1909.07505

NuFact 2024 (Argonne Natl. Lab)

What about the long-ranged scalar potential?

Consider long-ranged ϕ potential from matter sources inducing a neutrino mass correction:

→
$$\frac{n_f y_{xp} y_f}{m_p^2}$$
 for $m_f l_{max}(R_{\oplus}, depth) >> 1$

Recovers the short-range description

Cutoff for DUNE beam depth: $m_{\phi} \sim 10^{-14} \text{ eV}$

Wise, Zhang 1803.00591 Smirnov, Xu 1909.07505 Babu, Chauhan, Dev 1912.13488 Agarwalla, Bustamante, Singh, Swain 2404.02775

NuFact 2024 (Argonne Natl. Lab)

How to parameterize the physics?

Flavor Basis: Normalize to one of the mass splittings

$$\delta \mathbb{M}_{\alpha\beta} \equiv \sqrt{|\Delta m_{31}^2|} \begin{pmatrix} \eta_{ee} & \eta_{e\mu} e^{i\phi_{e\mu}} & \eta_{e\tau} e^{i\phi_{e\tau}} \\ \eta_{e\mu} e^{-i\phi_{e\mu}} & \eta_{\mu\mu} & \eta_{\mu\tau} e^{i\phi_{\mu\tau}} \\ \eta_{e\tau} e^{-i\phi_{e\tau}} & \eta_{\mu\tau} e^{-i\phi_{\mu\tau}} & \eta_{\tau\tau} \end{pmatrix} \quad \eta_{\alpha\beta} = \frac{n_f y_f y_{\alpha\beta}}{\sqrt{|\Delta m_{31}^2|} m_{\phi}^2}$$

$$H\supset \mathbb{M}^{\dagger}\cdot\delta\mathbb{M}\supset m_1 imes\eta$$
 [modulo PMNS elements]

- Depends on choice for m₁
- One choice: fixing Δm_{21}^{2} and Δm_{31}^{2} to measured values, and specify a choice of m_{1} to constrain η 's

Light SNSI Oscillations at DUNE Far Detector and $\delta_{\rm CP}$ Extraction

[2401.02107]

- We consider L~1300 km baseline oscillations from the DUNE beam neutrinos
- 4 component analysis: electron (anti)neutrino appearance, muon (anti)neutrino disappearance
- 5% flux normalization uncertainty

See also: Moon Moon's talk, [2309.12249], [2210.00109]

Resolving the CP Phase at DUNE

- Test for δ_{CP} at DUNE with scalar NSI (SNSI) in the long-baseline oscillations
- We marginalize over the all SNSI (η magnitudes and phases)
- We expect degeneracies to show up in the measurement just like vector NSI

Dependence on the lightest neutrino mass

- Generically get the best upper limit (U.L.) when m₁ is larger
 - Enhances the $M \cdot \delta M$ term
- To evaluate the best
 possible sensitivity,
 take the largest m₁
 value

Other Constraints on Non-standard Oscillations (light scalars) [1912.13488] Babu, Chauhan, Dev

In Medium Mass: Our Sun

 Long-ranged scalar potential induces in-medium mass correction ~ y<φ> in the sun

In Medium Mass: Supernova

• Likewise, the long ranged potential in supernova

Additional constraints from, e.g.

- BBN
- $\Delta Neff$ and CMB
- Scattering experiments (high masses)

Long-ranged mass correction should not exceed solar data : $\Delta m_{sun} = n^{Sun}_{f} y_{f} y_{v} / m_{\phi}^{2} < 7.4 \text{ meV}$

Long-ranged mass correction should not modify neutrino free streaming :

 $\Delta m_{SN} = n_{f}^{SN} y_{f} y_{v} / m_{\phi}^{2} < T_{v} \sim 5 \text{ MeV}$

Seeing the full picture: translating to neutrino/electron Yukawas

- Marginalize over all η 's and δ_{CP}
- Take the best constraint on $\eta_{\alpha\beta}$ (and the associated Yukawa) after marginalizing all others

Adrian Thompson (I

(Northwestern U.)

...and the neutrino/nucleon Yukawas

- Marginalize over all η 's and δ_{CP}
- Take the best constraint on $\eta_{\alpha\beta}$ (and the associated Yukawa) after marginalizing all others

Key Points

- Light-mediator scalar NSI modify the effective mass matrix in the propagation Hamiltonian
- Degeneracies with the absolute neutrino masses
- Degeneracies with oscillation parameters, e.g. δ_{CP}
- However DUNE appears to only be sensitive to SNSI already ruled out by more powerful long-ranged effects : $\Delta m_{\rm SN}$ and $\Delta m_{\rm Sun}$

Backup Deck

Scalar or Vector NSI?

$$\bar{\nu}_{\alpha} \left[\gamma^{0} (i\partial_{0} - V_{\alpha\beta} - \frac{n_{f}g_{f}g_{\alpha\beta}}{m_{V}^{2}}) - i\gamma \cdot \nabla - M_{\alpha\beta} \right] \nu_{\beta} = 0$$
Propagation Hamiltonian

Realized as a potential energy shift

$$H_{\alpha\beta} = \frac{1}{2E_{\nu}} \mathbb{M}_{\alpha\beta}^{\dagger} \mathbb{M}_{\alpha\beta} + (V_{\rm CC} + V_{\alpha\beta}^{\rm NSI})$$

Adrian Thompson

(Northwestern U.)

NuFact 2024 (Argonne Natl. Lab)

Many-parameters vs. on	le-at-a-time
------------------------	--------------

All floating, 1-D marginals

$m_{ m lightest} = 0.1 \ { m eV}$		
MO	NSI	$\eta_{lphaeta}$
	η_{ee}	[-0.0074, 0.0026]
	$\eta_{\mu\mu}$	[-0.016, 0.009]
NO	$\eta_{ au au}$	[-0.016, 0.008]
	$\eta_{e\mu}$	[0, 0.007]
	$\eta_{e au}$	[0, 0.008]
	$\eta_{\mu au}$	[0, 0.016]
	η_{ee}	[-0.0077, 0.0082]
	$\eta_{\mu\mu}$	[-0.011, 0.0067]
IO	$\eta_{ au au}$	[-0.0081, 0.0096]
	$\eta_{e\mu}$	[0, 0.0073]
	$\eta_{e au}$	[0, 0.0077]
	$\eta_{\mu au}$	[0, 0.012]

One-at-a-time

NSI	NO $(m_1 = 0.1 \text{ eV})$	IO $(m_3 = 0.1 \text{ eV})$
η_{ee}	[-0.006, 0.006]	[-0.0077, 0.0059]
$\eta_{\mu\mu}$	[-0.004, 0.004]	[-0.0036, 0.004]
$\eta_{ au au}$	[-0.004, 0.004]	[-0.0037, 0.0036]
$ \eta_{e\mu} $	[0,0.0017]	[0,0.0017]
$ \eta_{e\tau} $	[0,0.0019]	[0, 0.0015]
$ \eta_{\mu au} $	[0,0.0042]	[0,0.0035]

Multi-dimension al parameter scan

MultiNest

Adrian Thompson (Northwestern U.)

NuFact 2024 (Argonne Natl. Lab)

Multi-dimension al parameter scan

MultiNest

Adrian Thompson

NuFact 2024 (Argonne Natl. Lab)

How to parameterize the physics?

Flavor Basis: Normalize to one of the mass splittings

$$\delta \mathbb{M}_{\alpha\beta} \equiv \sqrt{|\Delta m_{31}^2|} \begin{pmatrix} \eta_{ee} & \eta_{e\mu} e^{i\phi_{e\mu}} & \eta_{e\tau} e^{i\phi_{e\tau}} \\ \eta_{e\mu} e^{-i\phi_{e\mu}} & \eta_{\mu\mu} & \eta_{\mu\tau} e^{i\phi_{\mu\tau}} \\ \eta_{e\tau} e^{-i\phi_{e\tau}} & \eta_{\mu\tau} e^{-i\phi_{\mu\tau}} & \eta_{\tau\tau} \end{pmatrix} \quad \eta_{\alpha\beta} = \frac{n_f y_f y_{\alpha\beta}}{\sqrt{|\Delta m_{31}^2|} m_{\phi}^2}$$

$$\delta \mathbb{M}_{ij} = U^{\dagger} \delta \mathbb{M}_{\alpha\beta} U = \begin{pmatrix} \epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{12}^{*} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{13}^{*} & \epsilon_{23}^{*} & \epsilon_{33} \end{pmatrix} \qquad \begin{aligned} \epsilon_{11} \to -\epsilon_{11} - 2m_1 \\ \epsilon_{22} \to -\epsilon_{22} - 2m_2 \\ \epsilon_{33} \to -\epsilon_{33} - 2m_3 \\ \epsilon_{ij} \to -\epsilon_{ij}; \quad i \neq j \end{aligned}$$

Physical Degrees of Freedom

$$\mathbb{M}_{\text{eff}}^2 \equiv \begin{pmatrix} m_1^2 + \mu_{11} & \mu_{12} & \mu_{13} \\ \mu_{12}^* & m_2^2 + \mu_{22} & \mu_{23} \\ \mu_{13}^* & \mu_{23}^* & m_3^2 + \mu_{33} \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 0 & \mu_{12} & \mu_{13} \\ \mu_{12}^* & \Delta m_{12}^2 - \mu_{11} + \mu_{22} & \mu_{23} \\ \mu_{13}^* & \mu_{23}^* & \Delta m_{13}^2 - \mu_{11} + \mu_{33} \end{pmatrix}$$

- Depends on choice for m_1
- One choice: fixing Δm_{21}^{2} and Δm_{31}^{2} to measured values, and specify a choice of m_{1} to constrain η 's

$$\delta \mathbb{M}_{ij} = U^{\dagger} \delta \mathbb{M}_{\alpha\beta} U = \begin{pmatrix} \epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{12}^{*} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{13}^{*} & \epsilon_{23}^{*} & \epsilon_{33} \end{pmatrix}$$

[9-1=8 physical oscillation parameters; subtract constant times identity matrix]

$$\mu_{11} = 2m_1\epsilon_{11} + |\epsilon_{11}|^2 + |\epsilon_{12}|^2 + |\epsilon_{13}|^2,$$

$$\mu_{22} = 2m_2\epsilon_{22} + |\epsilon_{22}|^2 + |\epsilon_{12}|^2 + |\epsilon_{23}|^2,$$

$$\mu_{33} = 2m_3\epsilon_{33} + |\epsilon_{33}|^2 + |\epsilon_{13}|^2 + |\epsilon_{23}|^2,$$

$$\mu_{12} = (m_1 + m_2 + \epsilon_{11} + \epsilon_{22})\epsilon_{12} + \epsilon_{13}\epsilon_{23}^*,$$

$$\mu_{13} = (m_1 + m_3 + \epsilon_{11} + \epsilon_{33})\epsilon_{13} + \epsilon_{12}\epsilon_{23}^*,$$

$$\mu_{23} = (m_2 + m_3 + \epsilon_{22} + \epsilon_{33})\epsilon_{23} + \epsilon_{13}\epsilon_{12}^*.$$

See also: Denton, Giarnetti, Meloni [2210.00109]

1

1

DUNE Spectra

