T violation at a future neutrino factory

R. Kitano¹, J. Sato², S. Sugama² ¹KEK, ²Yokohama National Univ.

Ref. arXiv: 2407.05807 [hep-ph]

16-21 September 2024 NuFact 2024 @ Argonne National Laboratory

Contents

- 1. Introduction
- 2. CP and T violation in neutrino oscillations
- 3. Result
- 4. Summary

Motivation

• Testing T violation in lepton sector has not been achieved

• CP and T violation measurements as a non-trivial check of the CPT theorem in QFT

Introduction

Framework of standard 3 flavor ν oscillation in matter

$$
i \frac{d}{dt} \begin{pmatrix} v_e(\bar{v}_e) \\ v_\mu(\bar{v}_\mu) \\ v_\tau(\bar{v}_\tau) \end{pmatrix} = [U \text{diag}(0, \Delta E_{21}, \Delta E_{31}) U^{\dagger} + \text{diag}(\pm A, 0, 0)] \begin{pmatrix} v_e(\bar{v}_e) \\ v_\mu(\bar{v}_\mu) \\ v_\tau(\bar{v}_\tau) \end{pmatrix}
$$

\n
$$
= \widetilde{U}^{(\pm)} \text{diag}(\tilde{E}_1^{(\pm)}, \tilde{E}_2^{(\pm)}, \tilde{E}_3^{(\pm)}) \widetilde{U}^{(\pm) \dagger} \begin{pmatrix} v_e(\bar{v}_e) \\ v_e(\bar{v}_e) \\ v_\tau(\bar{v}_\tau) \end{pmatrix}
$$

\n
$$
U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

\nCP phase

Introduction

CP violation : if $\delta = 0$, this difference does not zero → **Matter effect may mimic CP violation**

$$
P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})
$$

= -4 $\sum_{j>k}$ {Re $[\tilde{U}^{(+)}{}_{\beta j}\tilde{U}^{(+)}{}_{\alpha j}^* \tilde{U}^{(+)}{}_{\beta k}^* \tilde{U}^{(+)}{}_{\alpha k}] \sin^2 \left(\frac{\Delta \tilde{E}_{jk}^{(+)} L}{2}\right)$
- Re $[\tilde{U}^{(-)}{}_{\beta j}\tilde{U}^{(-)}{}_{\alpha j}^* \tilde{U}^{(-)}{}_{\beta k}^* \tilde{U}^{(-)}{}_{\alpha k}] \sin^2 \left(\frac{\Delta \tilde{E}_{jk}^{(-)} L}{2}\right)\}$
+2 $\sum_{j>k}$ {Im $[\tilde{U}^{(+)}{}_{\beta j}\tilde{U}^{(+)}{}_{\alpha j}^* \tilde{U}^{(+)}{}_{\beta k}^* \tilde{U}^{(+)}{}_{\alpha k}] \sin \left(\Delta \tilde{E}_{jk}^{(+)} L\right)$
- Im $[\tilde{U}^{(-)}{}_{\beta j}\tilde{U}^{(-)}{}_{\alpha j}^* \tilde{U}^{(-)}{}_{\beta k}^* \tilde{U}^{(-)}{}_{\alpha k}] \sin \left(\Delta \tilde{E}_{jk}^{(-)} L\right)]$

Introduction

T violation : if $\delta = 0$, this difference is exactly zero → **Matter effect is not important** → **Pure CP (T) violating effect** $P(\nu_{\alpha} \rightarrow \nu_{\beta}) - P(\nu_{\beta} \rightarrow \nu_{\alpha})$ $= -16$ Im $\left[\widetilde{U}^{(+)}{}_{\beta 2}\widetilde{U}^{(+)}{}_{\alpha 2}\right]$ ∗ $\widetilde{U}^{(+)}{}_{\beta}^*{}_{1}$ ∗ $\widetilde{U}^{(+)}$ _{α 1} \times sin² $\varDelta\tilde{E}^{(\pm)}_{31}$ $+$ \overline{L} 2 sin² $\varDelta\tilde{E}^{(\pm)}_{32}$ + \overline{L} 2 sin² $\varDelta\tilde{E}^{(\pm)}_{21}$ + \overline{L} 2 α sin δ

CP violation and T violation in matter

CP violation and T violation in matter

Robust test of CP phase free from matter effects!

Probability of $\nu_e \rightarrow \nu_\mu$

At the HK, in principle, v_{μ} and \bar{v}_{μ} are distinguished by neutron tagging method.

We can define the oscillation probability $P(v_e \rightarrow v_\mu)$ as

 $P(v_e \rightarrow v_\mu) =$ $N_{\rm far}^{\rm 'e}$ $v_e \rightarrow v_\mu$ $N_{\rm near}^{\nu_e\to\nu_e}$ Perfect charge identification

No charge identification
\n
$$
P(\nu_e \to \nu_\mu) = \frac{\left(N_{\text{far}}^{\nu_e \to \nu_\mu} + N_{\text{far}}^{\overline{\nu}_\mu \to \overline{\nu}_\mu}\right) - N_{\text{far}}^{\overline{\nu}_\mu \to \overline{\nu}_\mu}\right|_{\text{T2HK}}
$$
\n
$$
N_{\text{near}}^{\nu_e \to \nu_e}
$$

Definition of $\chi_{\rm TV}^2$ $\chi^2_{\rm TV} \equiv \sum$ j $P_j^{\text{TV}}(\delta_0, \ \rho_0) - P_j^{\text{TV}}(\delta^{\text{test}}, \ \ \rho)$ test 1^2 ΔP_j $TV\$ ² Statistical analysis

$$
P_j^{\text{TV}}(\delta, \rho) \equiv P_j(\nu_e \to \nu_\mu) - P_j(\nu_\mu \to \nu_e)\Big|_{\text{T2HK}}
$$

i runs over energy bins, ρ is matter density of the Earth In this study, we consider only statistical error. The $\Delta P_{j}^{\mathrm{TV}}$ is obtained by modified oscillation probability

Reference values

The reference values are the arithmetic average of bfp in Particle Data Group 2022.

In this study, we consider only Normal Ordering.

Result of T violation

Free from matter density!

Result of T violation

Free from matter density!

 χ^{2}_{TV} only depends on δ .

・ No charge id and unpolarized muon, $\delta = 0^{\degree}$ and 180^{\degree} (CP (or T) conserving point), can be excluded at the level of 3σ .

・With no ability of distinguish v_μ and \bar{v}_μ , the sensitivities do not change significantly.

Comparing with CP violation

• Define χ^2_{CP} in a similar way as T violation.

Non-trivial ρ **dependence.**

A good knowledge of the matter density profile will be necessary.

・T violation will be an important additional information for the measurement of the CP angle δ .

Summary

• Testing T violation in the lepton sector has not been achieved, so it is important in particle physics.

- We study the possibility of measuring T violation, by combining $v_e \rightarrow v_\mu$ (μ TRISTAN \rightarrow HK) and $v_\mu \rightarrow v_e$ (T2HK).
- If nature has chosen $\delta = 270^{\circ}$, we can exclude $\delta = 0^{\circ}$, 180 $^{\circ}$ at more than 3σ
- Comparing with the χ^2 for T violation and CP violation, T violation would not suffer from the uncertainty in the matter density profile of the earth.
- In this study, we only consider the statistical error. A more complete analysis will be necessary to establish the feasibility.

Back up

Background subtraction

At the HK, in principle, v_μ and \bar{v}_μ are distinguished by neutron tagging method. We can define the oscillation probability $P(v_e \rightarrow v_\mu)$ as

$$
P(\nu_e \to \nu_\mu) = \frac{1}{\kappa} \frac{\left(\kappa N_{\text{far}}^{\nu_e \to \nu_\mu} + (1 - \kappa) N_{\text{far}}^{\overline{\nu}_\mu \to \overline{\nu}_\mu}\right) - (1 - \kappa) N_{\text{far}}^{\overline{\nu}_\mu \to \overline{\nu}_\mu}\Big|_{\text{T2HK}}}{\kappa N_{\text{near}}^{\nu_e \to \nu_e}}
$$

 $\kappa \equiv$ $1 + C_{\rm id}$ 2 *,* \mathcal{C}_id *:* charge identification efficiency

In the case of $C_{id} = 0.0$, we just do not perform the charge identification analysis and simply add the background events, and subtract the estimated amount by using the T2HK data, i.e. we take $\kappa = 1$ and $1 - \kappa = 1$.

Statistical error ΔP^{TV}_j

$$
\left(\Delta P_{j}^{\text{TV}}\right)^{2} = \left(\Delta P_{j}^{\nu_{e} \to \nu_{\mu}}\right)^{2} + \left(\Delta P_{j}^{\nu_{\mu} \to \nu_{e}}\right)^{2}
$$
\n
$$
= \left(P_{j}^{\nu_{e} \to \nu_{\mu}}\right)^{2} \left[\left(\frac{\sqrt{\left(\kappa N_{\text{far}}^{\nu_{e} \to \nu_{\mu}} + (1 - \kappa) N_{\text{far}}^{\overline{\nu}_{\mu} \to \overline{\nu}_{\mu}}\right)}{\kappa N_{\text{far}}^{\nu_{e} \to \nu_{\mu}}}\right)_{j}^{2}
$$
\n
$$
+ \left(P_{j}^{\nu_{\mu} \to \nu_{e}}\right)^{2} \left[\left(\frac{\sqrt{N_{\text{far}}^{\nu_{\mu} \to \nu_{e}}}}{N_{\text{far}}^{\nu_{\mu} \to \nu_{e}}}\right)_{j}^{2} + \left(\frac{\sqrt{N_{\text{near}}^{\nu_{\mu} \to \nu_{\mu}}}}{N_{\text{near}}^{\nu_{\mu} \to \nu_{\mu}}}\right)_{j}^{2}\right]
$$
\n
$$
\sim \left(P_{j}^{\nu_{e} \to \nu_{\mu}}\right)^{2} \left(\frac{\sqrt{\left(\kappa N_{\text{far}}^{\nu_{e} \to \nu_{\mu}} + (1 - \kappa) N_{\text{far}}^{\overline{\nu}_{\mu} \to \overline{\nu}_{\mu}}\right)}{\kappa N_{\text{far}}^{\nu_{e} \to \nu_{\mu}}}\right)_{j}^{2} + \left(P_{j}^{\nu_{\mu} \to \nu_{e}}\right)^{2} \left(\frac{\sqrt{N_{\text{far}}^{\nu_{\mu} \to \nu_{e}}}}{N_{\text{far}}^{\nu_{\mu} \to \nu_{e}}}\right)_{j}^{2}
$$

Neutron tagging

$$
SK-Gd: efficiency \sim 70\%
$$

Hyper-K: efficiency $\geq 70\%$

R. Akutsu. Ph.D thesis, Tokyo University, 2019.

Number of events

Number of events

Possible CPT test?

Although we do not try in this study, one would be able to perform a similar analysis for CPT violation,

$$
P_j^{CPT} = P_j(\nu_e \to \nu_\mu) - P_j(\bar{\nu}_\mu \to \bar{\nu}_e) \Big|_{\text{T2HK}} = P_j^{TV} + P_j^{CP}
$$

Under our assumptions, this quantity would not measure anything. The analysis of this kind will be a quite important fundamental test of symmetry in physical laws of the Universe. Nevertheless, this will provide us with a quite important test of our underlying assumptions such as the three-neutrino scheme as well as quantum field theory.