Neutrino mass ordering sensitivities at DUNE, HK and KNO in presence of scalar NSI

M.M. Devi

Department of Physics, Tezpur University, Assam 784028, INDIA devimm@tezu.ac.in

NuFact 2024 - The 25th International Workshop on Neutrinos from Accelerators September 16-21, 2024 Argonne National Laboratory, Illinois, USA

イロメ イタメ イモメイモメ

Outline

- Introduction: ν interactions, Matter effects & ν Oscillations
- Scalar Non-standard Interactions
	- ▶ Idea
	- ▶ Formalism
	- ▶ Our methodology
	- ▶ Impact of Scalar NSI in long baseline sector: mass ordering sensitivities
- Concluding Remarks & Outlook

イロト イ何 トイヨ トイヨ トー

 QQ

 \equiv

Neutrino interactions with matter

• Neutrinos interact with matter via charged-current (CC) or neutral-current (NC) interactions.

◆ ロ ▶ → 母

- Only ^ν*^e* participate in CC interactions.
- NC interactions are flavour blind.

 299

Neutrino interactions in standard model

- \bullet Elastic *v*–electron scattering.
- The neutrino matter effects come from the forward scattering of neutrinos, considering zero momentum transfer between initial and final states.
- The effective Lagrangian for these interactions is given by

$$
\mathcal{L}_{cc}^{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \left[\overline{\nu_e}(p_3) \gamma_\mu P_L \nu_e(p_2) \right] \left[\overline{e}(p_1) \gamma^\mu P_L e(p_4) \right],
$$

- *P_L* and *P_R*: left and right chiral projection operators respectively, with $P_L = (1 \gamma_5)/2$ and $P_R = (1 + \gamma_5)/2$
- p_i 's: momentum of incoming and outgoing states
- \bullet G_F : the Fermi constant.

三 Ω

イロメ イタメ イモメイモメー

The effective Hamiltonian for ν**–oscillations in matter**

- These effects appear as matter potentials in the neutrino Hamiltonian $V_{\text{CC}} = \pm \sqrt{2} G_F n_e$ and $V_{\text{NC}} = -\frac{G_F n_n}{\sqrt{2}}$ $\sqrt{2}$
- The effective Hamiltonian (\mathcal{H}_{matter}) :

$$
\mathcal{H}_{matter} \approx E_v + \frac{M M^{\dagger}}{2E_v} \pm V_{\text{SI}}\,,
$$

- The neutrino mass matrix *M* in flavour basis: $\mathcal{U}D_{\nu}\mathcal{U}^{\dagger}$, where $D_{\nu} \equiv \text{diag}(m_1, m_2, m_3)$.
- The simplified effective Hamiltonian (H_{matter}) :

$$
\mathcal{H}_{\text{matter}} = E_v + \frac{1}{2E_v} \mathcal{U} \text{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) \mathcal{U}^{\dagger} + \text{diag}(V_{\text{CC}}, 0, 0)
$$

 209

イロト イ団 トイラトイ

Vector mediated NSI

- Vector NSI formalism: introduces an extra vector mediator
- The vector NSI effect contributes to the $\bar{\nu} \gamma^0 \nu$ term: a modified potential

Effective Hamiltonian for a typical vector NSI

$$
\mathcal{H}_{matter} \approx E_v + \frac{M M^{\dagger}}{2E_v} \pm (V_{\rm SI} + V_{\rm NSI})
$$

 Ω

A BAY BA

(□) (_□)

Scalar Non Standard Interactions

• Coupling of neutrinos with a scalar \rightarrow interesting possibility

Effective Lagrangian for a typical scalar NSI

$$
\mathcal{L}_{\text{eff}}^S = \frac{y_f y_{\alpha\beta}}{m_\phi^2} (\bar{v}_\alpha(p_3) v_\beta(p_2)) (\bar{f}(p_1) f(p_4)), \qquad (1)
$$

where,

- \bullet α , β refer to the neutrino flavors e, μ , τ ,
- \bullet $f = e$, u, d indicate the matter fermions, (e: electron, u: up-quark, d: down-quark),
- \bullet \bar{f} is for corresponding anti fermions,
- \bullet $y_{\alpha\beta}$ is the Yukawa couplings of the neutrinos with the scalar mediator ϕ ,
- y_f is the Yukawa coupling of ϕ with f ,
- \bullet m_{ϕ} is the mass of the scalar mediator ϕ .

Ge & Parke, PRL.122(2019)211801; Babu et al., PRD101(2020)095029 イロト イ押ト イヨト イヨト

 Ω

Scalar NSI

- The effective Lagrangian: can not be converted into vector currents
- The scalar NSI: will not appear as a contribution to the matter potential
- It may appear as a medium-dependent perturbation to the neutrino mass term
- The corresponding Dirac equation incorporating the new scalar interactions:

$$
\bar{\nu}_{\beta} \left[i \partial_{\mu} \gamma^{\mu} + \left(M_{\beta \alpha} + \frac{\sum_{f} n_{f} y_{f} y_{\alpha \beta}}{m_{\phi}^{2}} \right) \right] \nu_{\alpha} = 0,
$$

The effective Hamiltonian with scalar NSI

$$
\mathcal{H}_{\text{SNSI}} \approx E_{\nu} + \frac{M_{\text{eff}} M_{\text{eff}}^{\dagger}}{2E_{\nu}} \pm V_{\text{SI}}
$$

 $M_{\text{eff}} = M + M_{\text{SNST}}$

 209

イロメ イ押 トイラ トイラト

Scalar NSI

- M_{eff} (= $\mathcal{U}' D_{\nu} \mathcal{U}^{\dagger}$) can be diagonalized by a mixing matrix $\mathcal{U}^{'} \equiv P \mathcal{U} Q^{\dagger}$
- Q: a Majorana rephasing matrix, can be absorbed as $Q D_{\nu} Q^{\dagger} = D_{\nu}$
- P: unphysical diagonal rephasing matrix, rotated into the scalar NSI contribution

 $M_{eff} \equiv \mathcal{U}D_{v}\mathcal{U}^{\dagger} + P^{\dagger}M_{SNSI}P \equiv M + \delta M.$

- The scalar NSI contribution δ*^M* scales with the matter density.
- The oscillation probability would feel the matter density variations along the baseline.

 Ω

イロト イラトイミト

Scalar NSI in short baseline terrestrial experiments

- The variation in the matter density is negligible.
- \bullet One combination of M and δM : redefined as the effectively measured mass matrix.
- The matter density subtraction at their typical matter density ^ρ*^s* = 2.6 g/cm3 is $\text{implemented as } M + \delta M(\rho) \equiv M_{re} + \delta M(\rho_s) \frac{\rho - \rho_s}{\rho}.$
- At $\rho = \rho_s$: the effective mass matrix is $M_{re} \equiv M + \delta M(\rho_s) = U_v D_v U_v^{\dagger}$.

Ge & Parke, PRL.122(2019)211801; Babu et al., PRD101(2020)095029

 Ω

Scalar NSI in Solar sector

The scalar NSI is not energy dependent: not suppressed at low energies

Ge & Parke, PRL.122(2019)211801; Babu et al., PRD101(2020)095029

◆ ロ ▶ → 何 ▶

 QQ

Scalar NSI in Atmospheric sector

- The atmospheric neutrino oscillation: experiences matter density variation.
- Neutrinos crossing the Earth core: the most significant matter density variation.
- \bullet A binned analysis, mainly in the *γ*-zenith angle may identify the scalar NSI effects.

Ge & Parke, PRL.122(2019)211801; Babu et al., PRD101(2020)095029

 Ω

Scalar NSI in Long Baseline sector

- **The effective mass matrix may get modified by the scalar NSI: It can impact** δ_{CP} measurements.
- **Most relevant neutrino oscillation channels:** $ν_{\mu} \rightarrow ν_{e}$ (appearance) and $ν_{\mu} \rightarrow ν_{\mu}$
(disappearance) (disappearance)

[Our work: JHEP06(2022)129, JHEP01(2023)079, JHEP06(2024)128, arXiv:2406.15307, arXiv:2307.05348]

イロメ イタメ イモメイモメ

 2990

Parameterization

Parametrization of Scalar NSI effect

- δM : the perturbative term (scalar NSI in which the unphysical rephasing matrix P is rotated into)
- An effective and general form of δ*M*:

$$
\delta M \equiv S_m \begin{pmatrix} \eta_{ee} & \eta_{e\mu} & \eta_{e\tau} \\ \eta_{\mu e} & \eta_{\mu\mu} & \eta_{\mu\tau} \\ \eta_{\tau e} & \eta_{\tau\mu} & \eta_{\tau\tau} \end{pmatrix}.
$$

- Scaling $S_m \equiv$ √ $\sqrt{2.55 \times 10^{-3} eV^2}$, corresponds to a typical $\sqrt{|\Delta m_{31}^2|}$
- \bullet $\eta_{\alpha\beta}$: dimensionless, quantify the effects of the scalar NSI

 QQ

Choices of Scalar NSI matrix

The Hermicity of the neutrino Hamiltonian: diagonal elements are real and the off-diagonal elements are complex

$$
\eta_{\alpha\beta} = |\eta_{\alpha\beta}|e^{i\phi_{\alpha\beta}}; \qquad \alpha \neq \beta. \tag{2}
$$

- \bullet Our choice: a diagonal δM which preserves the Hermicity of the Hamiltonian
- Exploration of the scalar NSI elements through different probability channels.
- No definite bounds yet on $\eta_{\alpha\beta}$

 Ω

イロト イ母 トイラト

Choices of SNSI matrix

Case-I

$$
M_{\text{eff}} = \mathcal{U} \text{diag}(m_1, m_2, m_3) \mathcal{U}^{\dagger} + \sqrt{|\Delta m_{31}^2|} \text{ diag}(\eta_{\text{ee}}, 0, 0). \tag{3}
$$

Case-II

$$
M_{\text{eff}} = \mathcal{U} \text{diag}(m_1, m_2, m_3) \mathcal{U}^{\dagger} + \sqrt{|\Delta m_{31}^2|} \text{ diag}\left(0, \eta_{\mu\mu}, 0\right). \tag{4}
$$

Case-III

$$
M_{\text{eff}} = \mathcal{U} \text{diag}(m_1, m_2, m_3) \mathcal{U}^{\dagger} + \sqrt{|\Delta m_{31}^2|} \text{ diag}(0, 0, \eta_{\tau\tau}). \tag{5}
$$

Scalar NSI brings in a direct dependence of Neutrino Oscillations to the Absolute Neutrino masses!

Density dependence of SNSI

- The effect of SNSI scales linearly with matter density, upcoming experiments with longer baselines would observe a more dominant contribution.
- We define the $\eta_{\alpha\beta}$ parameters as for an experiment e.g. DUNE as,

$$
\eta_{\alpha\beta} = \eta_{\alpha\beta}^{(\text{true})} \left(\frac{\rho_{\text{DUNE}} - \rho_0}{\rho_0} \right).
$$

- $\frac{d_{\alpha\beta}}{d\beta}$ is the true value of the SNSI parameter.
- $\rho_{\text{\tiny{DUNE}}}$ is the average matter density experienced in DUNE.
- ρ_0 is the average matter density for reactor and LBL experiments from which the neutrino mixing parameters are currently determined.

 Ω

イロメ イタメ イモメイモメ

Methodology of probing Scalar NSI effects at a detector

A model independent study of Scalar NSI effects at DUNE

Oscillation Probabilities

Obtain Oscillation Probabilities by incorporating the modified NS Hamiltonian; **Numerically**

Statistical framework for Hypothesis Testing

- A statistical framework that includes a hypothesis testing to test different cases.
- **SI-case and various SNSI cases.**

Quantifying Detector Potential for chosen Scalar NSI cases

• The statistical tests would give the sensitivity of different models and finally would give a confidence level to constrain the values of the chosen parameters.

 Ω

イロメ イタメ イモメイモメ

Oscillation Probabilities in presence of SNSI

- NuOscProbExact: A general purpose probability calculator, which employs expansions of quantum operators in terms of SU(2) and SU(3) matrices to calculate oscillation probabilities
- The Hamiltonian: accordingly modified for NS Effects.
- Element-wise probe of the NSI effects

https://github.com/mbustama/NuOscProbExact

Statistical framework (using GLoBES package)

Statistical framework for Hypothesis Testing

A statistical framework that includes a hypothesis testing to test different cases.

$$
\Delta \chi^2 \equiv \min_{\eta} \sum_{i} \sum_{j} \frac{\left[N_{true}^{i,j}(\eta) - N_{test}^{i,j}(\eta) \right]^2}{N_{true}^{i,j}(\eta)}
$$

 $N_{true}^{i,j}$ ($N_{test}^{i,j}$) : number of true (test) events in the {*i*, *j*}-th bin.

Huber, P., [Lind](#page-18-0)n[er, M](#page-20-0)[.,](#page-18-0) [Wint](#page-19-0)[er,](#page-20-0) [W.](#page-16-0) Gomput. Phys. [C](#page-17-0)[o](#page-29-0)m[mun., \(](#page-32-0)2005)

DUNE: Deep Underground Neutrino Experiment: Upcoming superbeam neutrino experiment

イロト イ押 トイヨト イヨト

Ε

Long Baseline Counterparts of HyperK (HK, KNO)

χ 2 **– Analysis**

The statistical χ^2 to probe whether an experiment can distinguish between NO (
 $m_1 < m_2 < m_3$) and IO ($m_2 < m_3 < m_3$): $m_1 < m_2 < m_3$) and IO ($m_3 < m_1 < m_2$):

$$
\chi^2 \equiv \min_{\eta} \sum_{i} \sum_{j} \frac{\left[N_{true}^{i,j} - N_{test}^{i,j} \right]^2}{N_{true}^{i,j}},
$$

- $N_{true}^{i,j}$ and $N_{test}^{i,j}$: numbers of true and test events in the {*i*, *j*}-th bin
- Two cases are considered for the analysis to obtain $Δχ²$,

L Considering NO as the true mass ordering
	- \triangleright Considering NO as the true mass ordering,

$$
\Delta \chi_{\text{MO}}^2 = \chi_{\text{NO}}^2 - \chi_{\text{IO}}^2 \quad \text{(for true NO)}.
$$

 \triangleright Considering IO as the true mass ordering.

$$
\Delta \chi_{\text{MO}}^2 = \chi_{\text{IO}}^2 - \chi_{\text{NO}}^2 \quad \text{(for true IO)}.
$$

Significance: denoted by $n\sigma$, where $n \equiv \sqrt{\Delta \chi^2}$

 Ω

(□) (何) (三) (三) (

Synergy: DUNE, HK+KNO

- The combination of various experiments may help in determining the oscillation parameters unambiguously.
- Wider L–E space, increased statistics.

重

イロメ イ押メイヨメイヨメ

 QQ

Effects on Appearance Probability (DUNE, 1300 km)

- In absence of NSI, DUNE baseline can separate between NO and IO
- **•** Presence of η_{ee} widens the energy range and separation between the MOs
- \bullet $\eta_{\mu\mu}$ marginally reduces the separation; for $\eta_{\tau\tau}$ significant overlapping of bands

Effects on Appearance Probability (HK+KNO, 1100 km)

- In absence of NSI, HK+KNO baseline can separate between NO and IO
- Presence of ^η*ee* widens the energy range and separation between the MOs
- \bullet $\eta_{\mu\nu}$ reduces the discriminating power of the neutrino MO
- For $\eta_{\tau\tau}$, both the NO and IO band are seen to complet[ely](#page-24-0) [ove](#page-26-0)[rl](#page-24-0)[ap](#page-25-0)

Impact on MO sensitivities: DUNE

- True NO: +ve (-ve) values of $\eta_{ee}/\eta_{\mu\mu}$ enhance (suppress) the MO sensitivities.
- \bullet $n_{\tau\tau}$: Enhancement/suppression depending on the δ_{CP} value for true NO.
- \bullet For true IO, positive (negative) η_{ee} and $\eta_{\tau\tau}$, enhance (suppress) the MO sensitivities.
- For a +ve (-ve) $\eta_{\mu\mu}$ the sensitivities get mostly suppressed (enhanced), for true IO.

Impact on MO sensitivities: HK+KNO

We observe significant impact on MO–sensitivities at different δ*CP*, for both the MOs

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Impact on MO sensitivities: DUNE+HK+KNO

- The MO sensitivity is above 5σ CL for all values of δ_{CP} .
- For true NO, a positive (negative) η_{ee} and η_{uu} enhances (suppresses) the MO sensitivities for most values of δ*CP*.
- For true IO, the effect of $\eta_{\tau\tau}$ is prominent as compared to η_{ee} .

 Ω

Precision Measurement of Δm_{31}^2

- The constraining capability of DUNE+HK+KNO configuration is better compared to DUNE, HK+KNO for all the cases of scalar NSI parameters. Synergy leads to better constraining.
- In presence of η_{ee} and $\eta_{\tau\tau}$, the constraining of Δm^2_{31} is nominally better in comparison
to *n* to $\eta_{\mu\mu}$.

 299

Concluding Remarks & Outlook

- Identifying the subdominant effects like NSI in the neutrino experiments and their effects on the physics potential of different experiments are crucial.
- Scalar NSI may significantly impact on the determination of true MO.
- Scalar NSI & neutrino mass: dependence of neutrino oscillations on absolute neutrino masses.
- Scalar coupling models: parameterization of the scalar NSI effects.

 Ω

イロメ イタメ イモメイモメ

 299

イロト イ押 トイヨト イヨト

Benchmark values of the oscillation parameters

Table 1: Benchmark values of ν-oscillation parameters used.

ヨメ メヨメ

E

 299

K ロ ▶ K 伊 ▶

 \sim