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𝑁𝜈𝛽
𝐹𝐷 ∝ Φ𝜈𝛽

𝐹𝐷 × 𝜎𝜈𝛽
𝐹𝐷 × 𝜖𝐹𝐷 × 𝑃𝜈𝛼→𝜈𝛽
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• 50 kTon water Cherenkov detector

• Used in T2K as the far detector, located 295 km from the T2K beam 
source
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Super-Kamiokande

50 kTon total water mass
22.5 kTon fiducial mass
Over 10,000 PMTs

Nobel Prize in 2015 for 
neutrino oscillation discovery
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• The 295km baseline and 0.6GeV beam peak energy are designed to 
maximize the oscillation probability of 𝜈𝜇 → 𝜈𝑒

• T2K’s oscillation analysis measures the appearance of 𝜈𝑒 and the 
disappearance of 𝜈𝜇 by observing their energy spectrum at SK
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Super-Kamiokande
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• SK detects Cherenkov rings

• Muon rings tend to be “sharp”; electron rings tend to be “fuzzy”

• Reconstruction algorithm predicts what particle left what ring in 
the detector

• How robust is the reconstruction algorithm in reality?
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Super-Kamiokande

𝑒-like𝜇-like

T2K Preliminary T2K Preliminary
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• The event reconstruction algorithm gives us log-likelihood ratio-
based particle ID variables for each event

• T2K defines its analysis samples in SK (e.g., 1 ring e-like) by 
making cuts in these variables
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• How do we know how accurate the reconstruction algorithm is?

• What about difficult-to-model effects like light scattering intensity 
in water and PMT responses?
• May affect data differently from MC!
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• Assume any mis-modelling will show at the particle ID level as 
systematic shifts in particle ID variable value
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• Assume any mis-modelling will show at the particle ID level as 
systematic shifts in particle ID variable value,
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• Assume any mis-modelling will show at the particle ID level as 
systematic shifts in particle ID variable value,

• and/or as smearing out of the distribution
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• Assume any mis-modelling will show at the particle ID level as 
systematic shifts in particle ID variable value,

• and/or as smearing out of the distribution

• These effects may be different for different particles in the detector
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• Parameterize a fit to encode these systematic “shifts” and “smears”
• Modify particle ID variables directly for MC

• Move simulated event particle IDs around to try to make our 
simulation look like the data

• Post-fit {𝛼, 𝛽} set will encode the underlying reconstructed mis-
modelling between the simulation and data

• Different {𝛼, 𝛽} for different event types (e.g. electron or muon) and 
different energy ranges
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Fit parameterization

𝐿 → 𝛼𝐿 + 𝛽
Particle ID

(e.g., electron/muon particle ID) Smear Shift
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• Can’t use T2K beam data since we’d be over-fitting

• No good control samples span the full T2K kinematic range

• SK has a robust atmospheric neutrino program with data that 
spans the T2K energies with high statistics

• Strategy: fit the shift and smear parameters (𝛼, 𝛽) using SK 
atmospheric data and MC, then propagate the results to T2K beam 
data and MC
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What data do we use?
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• Fit the shape likelihood of the total MC histograms to the data 
histograms by modifying MC with {𝛼, 𝛽}

• Bin histograms in terms of our particle ID variables

• Markov Chain Monte Carlo framework samples the shape likelihood
• Results in a set of {𝛼, 𝛽} that is distributed according to the likelihood 

distribution
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How do we fit?
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• Take random samples from the {𝛼, 𝛽} and apply them to the T2K 
beam MC
• Since the T2K beam event samples are cut based on the particle ID 

variables, the {𝛼, 𝛽} will shift some events into and out of the signal 
samples

• Uncertainty in the count for each sample is encoded into a covariance 
matrix
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Toy MC procedure

𝜶 = 𝟏, 𝜷 = −𝟏𝟎𝟎𝟎
# μ-like: 774, # e-like: 226

𝜶 = 𝟐, 𝜷 = 𝟎
# μ-like: 526, # e-like: 474

Count the number 
of 𝜈𝑒 and 𝜈𝜇 events 

using many {𝛼, 𝛽} 
from the MCMC to 
get error estimate
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• 2023 analysis had many changes from 2022 that essentially only 
affected the single-ring samples in any significant way (i.e., 
everything but the FHC 𝜈𝜇𝐶𝐶1𝜋 sample)

• Removed several large “ad-hoc” errors from single-ring samples

• Added energy-dependent binning to single-ring samples

• Removed an intermediate covariance matrix that was used for the T2K 
toy MC procedure (toy MC now samples directly from MCMC posterior)
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SK Detector Error Matrix

SK detector error matrix diagonals
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Fit overview (2023)
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Fit overview (2022)
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• The covariance matrix provides an uncertainty on the number of 
events in each T2K-FD sample

• When T2K performs its oscillation analysis, the number of events in 
different T2K-FD samples are allowed to increase and decrease as 
determined by this uncertainty matrix
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How is the error matrix used?

T2K PreliminaryT2K Preliminary

1 Ring μ-like sample1 Ring e-like sample

2022 Analysis

2023 Analysis

2022 Analysis

2023 Analysis

Posterior-predictive plots of T2K MC corresponding to 21.428 × 1020 POT (neutrino mode)
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• Adding new particle ID variables for selecting future multi-ring T2K 
analysis samples
• A new 𝑁𝐶𝜋0 sample will help constrain 𝜋0 backgrounds in 𝜈𝑒 samples

• A new 𝜈𝑒𝐶𝐶1𝜋+ sample will add more 𝜈𝑒 signal statistics
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New additions post-2023

𝑁𝐶𝜋0 cartoon 𝜈𝑒𝐶𝐶1𝜋+ cartoon
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• New MC production with new interaction model 
• Previously Relativistic Fermi Gas-based model (Improved constraints on 

neutrino mixing from the T2K experiment with 3.3x10^21 protons on 
target)

• Now use Spectral Function-based model (Measurements of neutrino 
oscillation parameters from the T2K experiment using 3.6x10^21 
protons on target)
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New additions post-2023

https://inspirehep.net/literature/1840450
https://inspirehep.net/literature/1840450
https://inspirehep.net/literature/1840450
https://inspirehep.net/literature/2638628
https://inspirehep.net/literature/2638628
https://inspirehep.net/literature/2638628
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• Overhaul of code to increase speed
• Introduced multithreading and reduced code bloat

• Previously tuned MCMC by hand, now use Adaptive Metropolis to 
automatically tune MCMC

• ~10x faster from OA2023 to now!
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New additions post-2023

After adapting - better 
sampling efficiency
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https://projecteuclid.org/journals/bernoulli/volume-7/issue-2/An-adaptive-Metropolis-algorithm/bj/1080222083.full
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• The uncertainties are calculated from SK atmospheric neutrino 
data and MC, then applied to T2K beam MC

• Uncertainties are parameterized using a unique set of “shift” and 
“smear” parameters

• Error analysis focuses on modifying T2K particle ID variables

• New SK uncertainties will be one of the main updates for T2K’s 
upcoming oscillation analysis, in the absence of new data

• Stay tuned for future T2K results!
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• Example SK detector error matrix diagonal values, comparing the 
2022 analysis and 2023 analysis
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SK Detector Error Matrix
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• 2022 analysis covariance matrix (left) vs 2023 (right)
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SK Detector Error Matrix

𝐹𝐻𝐶 𝜈𝑒 𝐹𝐻𝐶 𝜈𝜇 𝑅𝐻𝐶 𝜈𝑒 𝑅𝐻𝐶 𝜈𝜇

𝐹𝐻𝐶
 𝜈𝑒CC1𝜋 𝐹𝐻𝐶 𝜈𝜇CC1𝜋
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• 2022 analysis correlation matrix (left) vs 2023 (right)
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SK Detector Error Matrix

Strong energy correlations due to 
lack of energy binning during fit
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• Example data / MC comparison plot for events with…
• More than 1 Cherenkov ring

• 0 delayed Michel electrons

• Visible energy between 700 and 1330 MeV
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Real data / MC comparison
C

o
u

n
ts

 /
 b

in

N
o

rm
a
li

z
e
d

 e
v
e
n

t 
ra

te Pre-fit total

Post-fit 1𝜎

Data

e/μ particle ID e/μ particle ID

MC topology



Boulder

• Adding new particle ID variables for future multi-ring T2K analysis 
samples (𝜈𝑒𝐶𝐶1𝜋+, 𝑁𝐶𝜋0)
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New additions
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