

### **Kim Siang Khaw** NuFact 2024 @ Argonne National Laboratory September 17, 2024







## Status of the muEDM experiment at PSI



## **Motivation for EDM searches**

$$\vec{t} = \eta \frac{e}{2mc} \vec{s}$$

- symmetry, assuming CPT invariance.
- Standard Model predicts small EDMs for fundamental particles
  - PRD 89 (2014) 056006 • CKM contribution:  $d_{\mu}^{CKM} \sim 10^{-42} \text{ e} \cdot \text{cm}$ , hadronic long-range effect:  $d_{\mu}^{HLR} \sim 10^{-38} \text{ e} \cdot \text{cm}$ PRL 125 (2020) 241802
  - Current experimental limit  $d_{\mu}^{BNL} < 1.8 \times 10^{-19} \text{ e} \cdot \text{cm} (95\% \text{ C. L.})$ PRD 80 (2009) 052008
  - Indirect limit from heavy atom EDM searches  $|d_{\mu}| < 2 \times 10^{-20} \,\mathrm{e} \cdot \mathrm{cm}$ PRL 128 (2022) 131803
  - Excellent probes for new physics since it is essentially "background-free"
- Any observed EDM signal is for sure BSM physics! A.D. Sakharov, JETP Lett. 5, 24 (1967) • May shed light on the baryon asymmetry in the universe as new sources of CPV are required







• Electric dipole moment (EDM) violates time-reversal symmetry and charge-parity (CP)







## **BSM/EFT models with large EDM**

### **EFT Analysis**

### Muon specific 2HDM



FNAL/J-PARC goal of 10<sup>-21</sup> e cm probes tiny phase space of BSM models





### **Radiative muon mass model**





# Going beyond 10<sup>-21</sup> e cm?

- How can we improve the sensitivity of the muon EDM search?
- In the parasitic g-2 approach, the tilt angle is the limiting factor
- For an EDM below 10<sup>-21</sup> e cm, it will be very challenging to measure this small angle  $< \mu rad$  (multiple scattering effect + systematic effects like mis-alignment)













### **Silicon Strip Detector** J-PARC Muon g-2/EDM



# The "frozen-spin" technique

$$\vec{\omega}_s - \vec{\omega}_c = -\frac{e}{m} \{ aB + (\gamma^2 - \gamma^2) \}$$

- Developed in 2004 for the muon EDM search PRL 93 (2004) 052001
- Freeze g-2 component by applying a radial E-field of ~  $aBc\beta\gamma^2$  $\rightarrow$  no anomalous precession in the storage plane  $\rightarrow$  EDM causes an increasing vertical polarization











### Principle of the FS-EDM measurement





### Up-down asymmetry measured using upper and lower detectors

$$\sigma(d_{\mu}) = \frac{\hbar \gamma^2 a_{\mu}}{2PE_{\rm f}\sqrt{N} \gamma \tau_{\mu} \alpha}$$

- *P* := initial polarization
- $E_{\rm f}$  := Electric field in lab
- $\sqrt{N}$  := number of positrons
- $\tau_{\mu} :=$  lifetime of muon
- := mean decay asymmetry





# The PSI muEDM Collaboration







Zürich







Technical

University

of Munich











UNIVERSIDAD NACIONAL

AUTÓNOMA DE MÉXICO





# Principle of the FS-EDM measurement





- Muon enters the solenoid through a SC injection channel
- Magnetic pulse kicker stops the muon's longitudinal motion within a weakly focusing field where it is stored
- Radial electric field 'freezes' the spin so that the precession due to the g-2 is cancelled
- Up-down detectors measure the asymmetry of the muon decay











| ieters          | Factor               | Event rate [Hz]     | Factor                | Event rate (Hz)     |  |
|-----------------|----------------------|---------------------|-----------------------|---------------------|--|
| $(\mu^+/s)$     | -                    | $4 \times 10^{6}$   | _                     | $1.2 \times 10^{8}$ |  |
| nsmission       | 0.03                 | $1.2 \times 10^{5}$ | 0.005                 | $6 \times 10^{5}$   |  |
| fficiency       | 0.017                | $2.0 \times 10^{3}$ | 0.6                   | $3.6 \times 10^{5}$ |  |
| efficiency      | 0.25                 | $5.0 \times 10^{2}$ | 0.25                  | $9.0 \times 10^{4}$ |  |
| er 200 days     | $8.64 \times 10^{9}$ |                     | $1.56 \times 10^{12}$ |                     |  |
| um, [MeV/c]     | $\approx 30$         |                     | 125                   |                     |  |
| actor, $\gamma$ | 1.04                 |                     | 1.56                  |                     |  |
| ic field, B [T] | 3                    |                     | 3                     |                     |  |
| $E_f [kV/cm]$   | 3                    |                     | 20                    |                     |  |
| symmetry, α     |                      | 0.3 0.3             |                       | 0.3                 |  |
| zation, $P_0$   |                      | 0.95                |                       | 0.95                |  |
| sitivity [e⋅cm] | $3 \times 10^{-21}$  |                     | $6 \times 10^{-23}$   |                     |  |





## **Overview of muEDM Phase**

### **Proof-of-principle of the frozen spin technique**







1.0 - 1.5mm wall thickness

### **Develop key technologies and** design the final instrument

- Full MC model
- Full FEM model
- Analysis and DAQ
- Injection channel made of a superconducting shield
- Pulsed magnetic field to kick muons on a stable orbit
- Nested electrode system with a minimal material budget for the frozen-spin technique















# **Muon Injection through SC channel**









- Long injection channels for beam collimation
- Superconducting material (YBCO) to shield injection channel from fringe field





- G4beamline/musrSim to optimize muon injection
- Storage efficiency  $\sim 0.5$  $\times 10^{-4}$



## **Muon Entrance Detector**







### **Optimized detector** geometry to maximize storage muons

Entrance detector wrapping up for beam test in this October





# Fast trigger for kicker coils





### Fast electronics design to satisfy timing requirements



## Storage Pulse Kicker



Short trigger delay necessitates internal latency of pulse generator to < 60 ns



![](_page_13_Picture_4.jpeg)

### First prototype

![](_page_13_Picture_6.jpeg)

- Coil quadrants generating pulsed
  longitudinal kick to store muons
- Technical requirements:
  - large amplitude
  - rapid triggering of short-duration pulsed magnetic field, with strong tail suppression

## **Frozen-spin Electrodes**

### Radial electric field applied by two concentric electrodes enclosing muon orbit

![](_page_14_Picture_2.jpeg)

### **Technical requirements:**

- Precise alignment with muon storage plane
- Heat dissipation
- Minimal multiple scattering for positrons
- Suppress Eddy current

![](_page_14_Picture_8.jpeg)

![](_page_14_Picture_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

### **Current** solution:

- $25 \ \mu m$  Kapton films
- Strip-segmented ~30 nm Al coating
- 2.2 mm pitch

Strip-segmented Alu-Kapton film approach suppresses Eddy current damping, without compromising electric field uniformity.

![](_page_14_Figure_17.jpeg)

![](_page_14_Figure_18.jpeg)

![](_page_14_Figure_19.jpeg)

![](_page_14_Picture_20.jpeg)

## Positron detectors for EDM Signal

- Double barrel SciFi tracker
- Measures longitudinal asymmetry of positron
- Bundles of fibers with good timing and position resolutions
  - transverse and longitudinal fibers

![](_page_15_Figure_5.jpeg)

![](_page_15_Picture_7.jpeg)

![](_page_15_Figure_9.jpeg)

- Photon time and position (longitudinal info on internal barrel)
- Large number of readout channel a challenge
- Considering other possible geometries

![](_page_15_Figure_13.jpeg)

![](_page_15_Figure_14.jpeg)

![](_page_15_Picture_15.jpeg)

![](_page_15_Picture_16.jpeg)

## Potential systematic effects

- Systematics: all effects that lead to the real or apparent precession of the spin mimicking EDM signal
- BNL/FNAL EDM searches provided very good guidance:
  - Misalignment in fields and detectors
  - Variation in detection efficiency
  - New type of systematics inclusively for frozen-spin approach
- Derive specifications of all technical designs of the experiment
  - Careful analysis of systematics using toyMC and Geant4 simulations
- A recent study can be found at <u>arXiv:2311.10508</u>

![](_page_16_Picture_9.jpeg)

![](_page_16_Picture_10.jpeg)

### Annual beam tests at PS

### 2019

![](_page_17_Picture_2.jpeg)

### **Characterisation of** potential beam lines

### 2022

![](_page_17_Picture_5.jpeg)

**Performance test of prototype entrance** detector and TPC tracker

### 2020

![](_page_17_Picture_8.jpeg)

### **Study multiple scattering of e<sup>+</sup> at** low momenta

![](_page_17_Picture_10.jpeg)

![](_page_17_Picture_12.jpeg)

![](_page_17_Picture_13.jpeg)

![](_page_17_Picture_14.jpeg)

2021

![](_page_17_Picture_16.jpeg)

**Characterization of potential electrode** material with e<sup>+</sup> and  $\mu^+$ 

2024

Aligning muon beam with center axis of injection channel

![](_page_17_Picture_22.jpeg)

![](_page_17_Picture_23.jpeg)

**Positron detection efficiency**, muon entrance detector

![](_page_17_Picture_25.jpeg)

![](_page_17_Picture_26.jpeg)

# Beam time @ PSI in Oct/Nov 2024

- Demonstrate successful spiral injection of particles into the solenoid.
- Measure reproducibility of the initial phase for both clockwise (CW) and counterclockwise (CCW) injections.

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_7.jpeg)

• Test performance of the muon entrance detector within the solenoid for stability and accuracy.

![](_page_18_Picture_9.jpeg)

# muEDM timeline

![](_page_19_Figure_1.jpeg)

- - Frozen-spin and off-axis spiral injection demonstrator
  - Competitive muon EDM measurement
- Phase-II: 2030s
  - Possibilities of incorporating novel muon beam cooling technology

![](_page_19_Picture_7.jpeg)

![](_page_19_Picture_8.jpeg)

# Summary and outlook

- The muEDM experiment at PSI is designed to probe the muon's electric dipole moment (EDM) with a target sensitivity of 10<sup>-23</sup> e cm
  - Utilizes a frozen-spin approach specifically designed for precise EDM measurements
  - Capable of testing a wide range of beyond Standard Model (BSM) physics scenarios.
- R&D for the Phase I of the experiment is progressing well.
  - Annual beam tests have been conducted since 2019 to evaluate key experimental components.
- We may have a better picture of the muon g-2 puzzle and new LFV results in the next 5 years
  - Results from muon EDM searches will provide complementary insights into muon sector BSM physics.

![](_page_20_Picture_8.jpeg)

![](_page_20_Picture_9.jpeg)

![](_page_20_Picture_10.jpeg)

![](_page_20_Picture_11.jpeg)