Dark Matter Search in the Muon g - 2 experiment at Fermilab Byungchul Yu, University of Mississippi μ On behalf of Muon g-2 collaboration

Sep. 18. 2024 (NuFact 2024)

Outline

• Muon g - 2 experiment at Fermilab

- Aim to measure the magnetic anomaly of the muon, a_{μ} at 140 ppb precision ($\omega_a = a_{\mu} \frac{e}{m_{\mu}} B$).
- Measurement of ω_a in the effort to track the time evolution of muon spin subject to magnetic field.
- Measurement of **B** by using nuclear magnetic resonance (NMR) technique with a shielded water sample.
- Please refer to these talks: Anomalous Spin Precession Frequency Analysis in the Muon g-2 Experiment at Fermilab Magnetic Field Analysis in the Muon g-2 Experiment Beam dynamics corrections of the Muon g-2 Experiment at Fermilab
- Dark Matter search in the Muon g 2 experiment at Fermilab
 - Why do we search for DM in the Muon g 2 experiment?
 - 2.
 - How can we observe Dark Matter signal from the Muon g 2 data? 3.
 - **Timeline with the future plans** 4.

– On Kim – David Kessler – David Tarazona

A Dedicated Period of Magnetic Field Systematics Studies in the Muon g-2 Experiment at Fermilab – Matthew Bressler

Which DM models interact with muon particle in the Muon g - 2 experiment?

Why do we search for Dark Matter in Muon g - 2 experiment?

Motivation

1. Dark Matter could be a major component of a complete fundamental description of nature -> Since we don't know their identity, we need to scan all possible DM mass range in all sectors

Motivation

- 2. Muon g 2 experiment may have some hints of new physics.
 - -> DM may be responsible for the potential discrepancy between SM prediction and experimental measurement.
 - indications of new physics.

-> It's a region unexplored before, potentially one of the most crucial areas to investigate due to the

Motivation

- 3. Muon g 2 experiment enables the direct search for two ultralight DM candidates (Scalar and **Pseudoscalar DM) that primarily interacts with muons.**
 - -> The sensitivity to these candidates greatly contributes to the area of wavelike(=ultralight bosonic) DM search from the muon sector.

This would be the first-ever direct DM search with muons in a storage ring

Which Dark Matter model interact with muon particle?

Signatures of DM in the Muon g - 2 experiment

- Scalar DM may induce apparent oscillations of the muon mass at DM frequency: $\omega_a(t) = a_\mu \frac{q}{m(t)} B$

It causes a modulation of magnitude of ω_a at m_{DM} (ω_a time series plot is required)

Two DM candidates that primarily interact with muon may alter muon spin precession in different ways

Signatures of DM in the Muon g - 2 experiment

- Scalar DM may induce apparent oscillations of the **Pseudoscalar DM may cause the muon's spin** muon mass at DM frequency: $\omega_a(t) = a_\mu \frac{q}{m(t)} B$ precession plane to be tilted and swing at DM frequency.

It causes a modulation of magnitude of ω_a at m_{DM} (ω_a time series plot is required)

Two DM candidates that primarily interact with muon may alter muon spin precession in different ways

It causes a modulation of A_N (Amplitude of asymmetry in distribution of e^+) at m_{DM} $(A_N \text{ time series plot is required })$

Signatures of DM in the Muon g - 2 experiment

- Scalar DM may induce apparent oscillations of the Pseudoscalar DM may cause the muon's spin muon mass at DM frequency: $\omega_a(t) = a_\mu \frac{q}{m(t)} B$ precession plane to be tilted and swing at DM frequency.

It causes a modulation of magnitude of ω_a at m_{DM} (ω_a time series plot is required)

Two DM candidates that primarily interact with muon may alter muon spin precession in different ways

asymmetry in distribution of e^+) at m_{DM} $(A_N \text{ time series plot is required })$

Expected DM sensitivity from experimental time scale

Maximum time scale

Last update: 2023-07-10 10:26 ; Total = 21.90 (xBNL)

Expected Dark Matter mass range with its corresponding frequency

Expected DM sensitivity from experimental time scale

Maximum time scale

Minimum time scale

Expected DM sensitivity from experimental time scale

Maximum time scale

Byungchul Yu (byu1@go.olemiss.edu) | University of Mississippi | NuFact 2024 (09. 18. 2024)

Minimum time scale

How can we observe the DM signals from the Muon g - 2 data?

Data preparation: Extracting ω_a from wiggle plots

- The ω_a is determined by the frequency of the modulation in the wiggle plot.

• From the Muon g - 2 data, specific dataset (ω_a time series) for the scalar DM search needs to be produced. • This requires the generation of "wiggle plot", showing the number of decay positrons as a function of time.

Weighted Log Likelihood Estimation (WLLE)

- WLLE takes into account both the Poisson nature of the count data and their uncertainty through the **assigned weights**. (assuming the Weighted Poisson Distribution)

$$\mathcal{L}(\lambda|x_1 \cdots x_n) = \prod_{i=1}^{N} \left(\frac{e^{-\lambda}\lambda^{x_i}}{x_i!}\right)^{w_i} \to \text{approximation}: -\log \mathcal{L} = -\sum_{i=1}^{n} S_i \log \frac{e^{-n_{\text{eff}}} n_{\text{eff}}^{x_i}}{N!},$$
where the effective counts $n_{\text{eff}} = \frac{\left(\sum_j w_j\right)^2}{\sum_j w_j^2}$ (not necessarily be an integer) and the scale factor S_i

Poor statistics in sub-run level wiggle plots lead to a significant bias on the fit results from the χ^2 method.

Generalized Lomb-Scargle (GLS) periodogram

- The GLS periodogram is designed for analyzing unevenly spaced time series data for detecting and characterizing periodic signals.
- This method includes a floating mean in sinusoidal wave model, effectively for fitting with an adjustable baseline and optimizing both the frequency and amplitude:

$$\chi^{2} = \sum_{i} \left(\frac{\left(y_{i} - f(t_{i}; \vec{p})\right)}{\sigma_{i}} \right)^{2}$$

$$, \text{ where } f(t_{i}; \vec{p}) = a \cos \omega t + b \sin \omega t + c$$

$$P_{N}(\omega) = \frac{1}{2\sigma_{0}} \left[\frac{\left\{ \sum_{i=1}^{N} w_{i}(y_{i} - \overline{y}) \cos \omega(t_{i} - \tau) \right\}^{2}}{\sum_{i=1}^{N} w_{i} \cos^{2} \omega(t_{i} - \tau)} + \frac{\left\{ \sum_{i=1}^{N} w_{i}(y_{i} - \overline{y}) \sin \omega(t_{i} - \tau) \right\}^{2}}{\sum_{i=1}^{N} w_{i} \sin^{2} \omega(t_{i} - \tau)} \right]$$

- FFT, which is limited by the sampling rate of the data.
- that potential dark matter signals are not missed.

• One of the key advantages of GLS method is the ability to customize the frequency domain settings, unlike

• This flexibility allows for a precise tuning of the frequency resolution and range, which is essential to ensure

Frequency grid optimization

• The structure of the ω_a time series data fundamentally determines the frequency grid optimization.

$$\left(f_{\min} = \frac{1}{\beta_{\min} \times T}, f_{\max} = \frac{\beta_{\max}}{(2 \times dT_{ave})}, df = \frac{1}{\alpha \times T}\right)$$
, where $\beta_{\min} = 1 \sim 10$, $\beta_{\max} = 1 \sim 10$, $\alpha = 2$

Time series data structure		Frequency grid	
Total time span (T)	2.99e7 s ≈ 346 days	Minimum frequency (f_{\min})	3.3e-8 Hz
Average time spacing (dT_{ave})	45.98 s	Maximum frequency (f_{max})	1.1e-1 Hz
Time sample size (N_T)	6.51e5	Frequency spacing (df)	1.7e-8 Hz
_	-	Trial frequency size (N _{trial})	6.51e6

- There is a risk of missing peaks in the periodogram if we arbitrary reset the frequency resolution.
- depends predominantly on T, which in our case is 10^{-8} Hz.

Need to keep using $df < 10^{-8}$ Hz over the whole frequency range because the width of the potential signal

assessment.

• To solidify our confidence, we are planning to implement a bootstrapping technique for a comprehensive final

Projected sensitivity plot for Scalar DM

Scalar DM (Yukawa coupling)

<u>Scalar DM search from Muon g-2 data will improve the projected sensitivity plot</u>

Ryan Janish, Harikrishnan Ramani PRD 102, 115018 (2020)

Rough timeline with future plans

- Remaining tasks in the data analysis framework will be completed (\sim Dec).
- Systematic study is currently working progress in parallel (\sim Dec).
- Scalar DM search analysis for Run-2/3 Muon g 2 data will be completely done (~2025 May).
- Pseudoscalar DM search data extraction will be launching in parallel (2025 \sim).

Thank you for your attention!

Back up slides

Physics signature

- Ultralight scalar field DM : $\phi(t) = \phi_0 \cos(m_{\phi} t)$ - Scalar coupling $\mathcal{L} \supset y\phi\bar{\mu}\mu$
- Ultralight Scalar DM may lead to induce apparent oscillations of the m_{μ} in a parallel direction to ω_a :

$$\omega_a(t) = a \frac{q}{m(t)} B = \omega_a^{SM} + \delta \omega_a^{\text{scala}}$$

, where $m(t) \rightarrow m_0(1 + \phi'_0 \cos m_{\rm DM} t)$

- Therefore, it causes a modulation of magnitude of ω_a at m_{DM} .
- Since DM mass is unknown, ω_a can be modulated at any frequency.
- Need to search for a wide spectrum of DM mass as much as as we can based on the estimation of DM sensitivity.

Pseudoscalar axion-like DM

Data analysis framework for the Muon g - 2 data

Looking at the entire parameter space

- observed one among all frequencies.
- Several approaches to obtain P_{FA} :
- **1. Independent frequency method:** find out the effective number of independent frequencies (N_{eff}).

 e^{-P} : local p-value (probability of getting a PSD as extreme as an observed one at a particular frequency) $1 - e^{-P}$: cumulative probability (probability of getting a PSD as common as an observed one at a particular frequency) $[1 - e^{-P}]^N$: Probability of getting at least one PSD as common as an observed one among all frequencies. $1 - [1 - e^{-P}]^N$: Probability of getting at least one PSD as extreme as an observed one among all frequencies. that to express analytically.

$$P_{\rm FA} \approx 1$$

Eventually, we will determine the global p-value (p_G) , from the FAP

• False Alarm Probability (P_{FA}) is the probability of getting at least one PSD as extreme as or more than an

- Note that, in the periodogram, the PSD at one frequency is closely correlated with the value at adjacent frequencies in a way

Looking at the entire parameter space

2. Baluev Method: All relevant information about correlation and mutual dependence of adjacent frequencies is contained in the window function.

$$P_{\rm FA} \approx 1 - P_{\rm single}(z)e^{-\tau(z)}$$

Where, $\tau(z) \approx W(1-z)^{(N-4)/2}\sqrt{z}$

and
$$W = f_{\max} \sqrt{4\pi \operatorname{var}(t)}$$

3. Bootstrap Method: the statistic is computed repeated on my random resamplings of the data in order to approximate the distribution of that statistic. 10^{-3} This method produce most robust estimate of FAP, but computationally intensive.

False Alarm Probability

Pseudoscalar DM signature (Perpendicular perturbation)

- **Ultralight Pseudoscalar DM works as an anomalous** magnetic field that interacts only with the muon spin, making the muon's spin precession plane tilted and swing at DM frequency.
- The decay positron is preferentially emitted to the spin direction, leading to the "up-down number" asymmetry".
- Up-down number asymmetry refers to a difference in the number of decay positrons accepted at the crystals in a calorimeter's upper and lower parts.
- Therefore, it causes a modulation of A_N (Amplitude) of up-down number asymmetry) at m_{DM}

Pseudoscalar DM exclusion plots

Ryan Janish, Harikrishnan Ramani PRD 102, 115018 (2020)

