NuFact 2024 - WG6: Detectors Sep 20, 2024 **Argonne National Lab**

Wei Shi on behalf of the DUNE Collaboration

Photon Detection System for DUNE Phase II FD: **Physics Prospects and Prototyping Status**

DUNE Far Site

SURF in Lead, South Dakota

Cavern excavation completed Feb 1, 2024 - outfitting & receive cryostats 4850 ft underground, 8 soccer fields, 800 ktons of rock Could house up to four 17 kt LAr TPC far detector modules

DUNE Phase II and FD3 APEX

Phase I (day 1)

- FD (approved): two 17 kt (total) LAr TPCs FD1 (Horizontal Drift), FD2 (Vertical Drift)
- ND (aim to approve by 2025): NDLAr with TMS; DUNE-PRISM; SAND on-axis

Phase II is ramping up - open to new (non-DUNE) collaborators!

- Two additional 17 kt FD modules: FD3 and FD4
- More Capable Near Detector (MCND) including ND-GAr
- > 2MW beam
- All necessary to complete the core CPV program of DUNE and more

DUNE FD3 vision

- Similar in concept to FD2 optimized VD
- Major upgrade light detection system APEX >> (This talk)
- Reference design: APEX + CRP
- Construction fully endorsed by the 2023 P5
- FD technically limited schedule
 - Earliest installation cryostat: 2029
 - Detector: 2031
 - Completion of LAr filling: 2034

for FD3 over time.

DUNE Vertical Drift FD §

- 6.5 m vertical drift distance, active volume 10,586 m³ 14,756 ton
- Charge readout: perforated PCB (reducing overall costs to HD)
- **Photodetectors**: X-Arapuca (60 cm x 60 cm)
 - Power-over-Fiber (PoF) technology enables 320 photodetectors deployed on **300 kV** high voltage surface **in LAr**
 - **First-ever** in cryogenics and particle physics <u>arXiv:2405.16816</u>
 - Similar amount photodetectors on membrane
 - Average detector efficiency is **3-4%**
 - VD: light yield mean ~ 39 PE/MeV (min 16 PE/MeV)

Photodetector as a Light Trap

• Two-stage wavelength shifting + dichroic filter for light trapping

- 127 nm \rightarrow 350 nm \rightarrow 430 nm
- **Compact device**
 - Save space for more fiducial volume
 - Easy to scale up for large area coverage
- Widely used in LArTPCs: ProtoDUNEs, SBND, DUNE HD & VD

FD3 APEX (Aluminum Profiles with Embedded X-Arapucas)

- - uniformity

Motivation for FD3 Enhanced Light Detection (I)

- improve FD ν_{ρ} event selection efficiency
 - track bkgs
 - decay products when combined with charge info
 - Improved ν_{ρ} -CC selection efficiency will recover statistics at 2nd osc peak

7

Enhanced light info (timing, position, etc) expected to boost charge-PID-based event selection and

• Sharp drop in efficiency at lower energy due to sparse electron showers and similarity to charged pion

Example event display: excellent light timing and coverage expected to help tag delayed pion

nu:12;tgt:1000180400;N:2212;proc:Weak[CC],RES;res:0;

Motivation for FD3 Enhanced Light Detection (II)

- and improve charge calorimetry energy resolution than phase I FD
 - Identify μ/π decay/capture
 - Tag **neutron** propagation with timing (up to μs), n-capture tagging with PDS + TPC
 - Reconstruct track/event direction for background rejection

Enhanced light info (timing, position, etc) expected to boost charge-PID-based reconstruction

nu:12;tgt:1000180400;N:2112;q:1(v);proc:Weak[CC],DIS;

How Light Helps CPV Measurement

- Light calorimetry offers an independent energy reconstruction for all DUNE CPV measurement
- - Better E resolution improve the sensitivity contribution from spectra shape
 - - DUNE wide-band beam offers possible access to the 2nd oscillation peak
 - Stronger CPV effect @2nd peak
 - Lower energy region: very different interaction processes and systematics
 - Measuring CP independently with two oscillation peaks is a unique capability of DUNE

 Light assisted PID helps improve charge based event reconstruction: energy resolution and efficiency Better E resolution and selection efficiency will improve the CPV significance at 2nd oscillation peak

JHEP09(2016)030

Enhanced Light Detection Opens New Windows into Neutrino CPV

Pure light calorimetry

Enhanced Light Detection Motivation for tens-of-MeV ν_{ρ} CC Events

- Combined light and charge calorimetry expected to improve MeV energy resolution
- Enhanced light system expected to facilitate **nucleon** (n/alpha/p) multiplicity tagging
 - Smearing to the secondary peak will be reduced

Expect to boost many DUNE low energy and other physics programs

- Improve search for diffused supernova neutrino background
- Improve Δm_{21}^2 sensitivity with solar neutrino day-night asymmetry
- Observe CEvNS glow of a supernova neutrino burst
- Increase supernova neutrino burst trigger efficiency
- BSM/dark matter ...

APEX (Aluminum Profiles with Embedded X-Arapucas): **Designed to Deliver Aforementioned Physics for FD3**

- - uniformity

APEX (Aluminum Profiles with Embedded X-Arapucas): **Ongoing Development**

- System engineering and prototyping
- Photo-collector R&D: new wavelength shifting coating
- Photosensor (SiPM) & optical coupling R&D
- Photodetector design, simulation, and prototyping

- Large bandwidth SoF, High Voltage PoF
- LAr cold readout electronics (digital & digital SiPM)
- Light propagation modeling
- Charge-light dual calorimetry event reconstruction
- Physics potentials across MeV-GeV

Inaugural APEX Workshop Toward DUNE Phase II FD

60+ participants!

DUNE FD3 APEX Prototyping Phases

2024-2025 **Ton-scale APEX** (CERN/Fermilab)

2025-2027 Kiloton-scale (CERN)

Charging up Test @ CERN 50L TPC

- A bulk G10 between FC metallic (conductive) profiles will charge up in **E** field
 - Interest to reduce the number of FC profiles if charging up time is short
- Test shows it's a slow process on surface: ~2 weeks
 - Same number of field cage profiles as phase I
 FD is still needed to save charging up time

Staged APEX CERN-2ton Prototype

Run 1 - projected to run ~3 weeks in Nov 2024

- Pure acrylic (PD-side-mechanical mockup only) + field cage + active TPC readout (with purification/recirculation)
- Goals
 - 1. **Define** detector assembly, installation, and mounting procedures (and generate feedbacks)
 - 2. **Demonstrate** stability and reliability of **each component** and the **full prototype** in **thermal cycle(s)**
 - 3. Further demonstrate safe operation on HV, improved field uniformity from insulating material on FC
- Procurement and machining work ongoing
- Run 2 early 2025: IF 1st prototype is successful, then reuse the same structure for the 2nd prototype
 - Active photodetector (with WLS functions, SiPM) + PoF/SoF **digital readout** + fiber routing
 - Prototype could be instrumented with **up to 8 photodetector** modules
 - R&D ongoing for further improve light trap photodetectors
 - Actively improving digital readout with PoF/SoF

Welcome new (non-DUNE) collaborators!

- APEX is a reference design for DUNE Phase II FD3 light detection system
- APEX significantly expands the active optical coverage area to O(2000 m^2) toward 4π light collection
- APEX will open new windows to GeV oscillation physics and MeV energy physics by leveraging light calorimetry and all other light system information
- Staged 2ton APEX prototypes is being built at CERN and will be tested 2024-2025, followed by ProtoDUNE scale prototype

Summary