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Electron scattering off nucleon and nucleus:
 G.T. Garvey et al. / Physics Reports 580 (2015) 1-45

Introduction

• Given the nuclear physics common to both electron and neutrino 
scattering from nuclei, we can study electron scattering to validate and 
tune MC generators for electron and neutrino interactions.
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• In terms of longitudinal and transverse virtual photon cross sections: 
𝑑𝜎

𝑑Ω𝑑𝐸!
= Γ 𝜎" 𝑊#, 𝑄# + 𝜖𝜎$ 𝑊#, 𝑄# ,

where Γ is the flux of virtual photons, 𝜖 is the virtual photon polarization;

• In terms of structure functions:
𝑑𝜎

𝑑Ω𝑑𝐸′
= 𝜎% 𝒲# 𝑊#, 𝑄# + 2 tan#

𝜃
2
𝒲& 𝑊#, 𝑄# ,

where 𝜎% = '(!)"!

*#
cos# +

#
 is the Mott cross section; 𝒲&,𝒲# are related to the 

ℱ&, ℱ# structure functions as ℱ& = 𝑀𝒲&, ℱ# = 𝜈𝒲#, 𝑀 is nucleon mass.

Descriptions of electron scattering differential cross section used in the literature:
Introduction

• In terms of longitudinal and transverse electromagnetic response functions 
𝑅$ 𝑄#, 𝜈 , 𝑅" 𝑄#, 𝜈 :

𝑑𝜎
𝑑𝜈𝑑Ω

= 𝜎%
𝑄'

𝐪'
𝑅$ 𝑄#, 𝜈 + tan#

𝜃
2
+
𝑄#

2𝐪#
𝑅" 𝑄#, 𝜈 .
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We use the 𝑅$, 𝑅% 
description.
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Descriptions of electron scattering differential cross section used in the literature:

• The three descriptions can translate to each other:
 𝑅" =

#ℱ&
%
= -

#.!(
𝜎",

 𝑅$ =
𝐪!

*!
ℱ'
#%0

= 𝐪!

*!
-

#.!(
𝜎$,

where 𝐾 = #%12*!

#%
, 𝑥 = *!

#%1
; ℱ$ = ℱ# 1 + '%!0!

*!
− 2𝑥ℱ& is called longitudinal 

structure function.

• Important quantities: 
 energy transfer 𝜈,
	 4-momentum transfer	𝑄,
	 3-momentum transfer	𝐪	where	𝐪# = 𝑄# + 𝜈#,
	 nuclear target mass 𝑀3	where	𝑀3 = 11.178𝐺𝑒𝑉	for	12C,
	 final state invariant mass 𝑊	where	𝑊# = 𝑀# + 2𝑀𝜈 − 𝑄#,
	 excitation energy 𝐸0 = 𝜈 − *!

#%(
.

Introduction
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Experimental Method: Rosenbluth Separation

• “Rosenbluth quantity”: 1 

	 Σ = ))
))45*++

# 𝐪*++
#

'(!)*++
" !

&

678! ,
! 4#

𝐪*++
.*++

!
89:! ,

!

;<
;1;=

    = 𝜖𝑅$ +
&
#

𝐪
*

#
𝑅"

where 𝜖 = 1 + 2 1 + 1!

*!
tan# +

#

2&
 is the virtual photon polarization.

• Fit Σ	against	𝜖	linearly in bins of 𝐪 	(or 𝑄#)	and	𝜈	(or	𝑊#,	𝐸0),	then we can 

extract	𝑅$ = slope, 𝑅" = 2 *
𝐪

#
×	intercept.
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Experimental Method: Rosenbluth Separation

• An example:
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Experimental Method: Christy-Bodek Universal Fit 

• An update to Prof. Christy and Prof. Bodek’s universal fit (A. Bodek, E. Christy. Phys. 
Rev. C 106, L061305 (2022)):

– Now includes a larger electron scattering dataset on H, D, and nuclear 
targets.

• Fits for all kinematic regions: 

– Elastic scattering, nuclear excitations, Quasi-Elastic, resonance and pion 
production, deep inelastic. 

Since the cross sections span a large range of energies and scattering angles, the 
fit can extract both the longitudinal 𝑹𝑳	and transverse 𝑹𝑻	contributions.
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Experimental Method: Christy-Bodek Universal Fit 

• Parameterizes both the Transverse Enhancement / MEC and the low 𝐪  
Longitudinal Quenching of QE cross section. 

• The fit alone can be used to evaluate Monte Carlo predictions for electron-
nucleus scattering.

• With Christy-Bodek universal fit and Rosenbluth separation, we carried out our 
𝑹𝑳	𝑹𝑻 extraction project.
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Goals: 
• To test first-principle nuclear theories; 
• To validate and tune MC generators.

Advantages: 
• We extract 𝑅$ and 𝑅" values on various nuclei using all available data

– Prioritize nuclei of interests to neutrino experiments
– Therefore, when we compare model predictions to measurements of 𝑅$ 

and 𝑅", we are effectively comparing to all electron scattering 
experiments at the same time.

• Large dataset, covering all kinematic regions (nuclear elastic, nuclear 
excitations, Quasi-Elastic, resonance, and inelastic scattering)
– More comprehensive than comparison with a few cross-section 

measurements in limited kinematic regions.
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𝑹𝑳	𝑹𝑻 Extraction Project



• For Carbon, there are ~10𝑘	electron scattering and photoproduction cross-
section measurements; 

– We use Rosenbluth Separation to extract 𝑅$, 𝑅" at 18 fixed 𝐪  values: 
0.1 < 𝐪 < 2.78	𝐺𝑒𝑉, and at 18 fixed 𝑄# values: 0 < 𝑄# < 3.45	𝐺𝑒𝑉#, 
both as functions of 𝜈.

– We apply Coulomb and Bin-centering corrections (need Christy-Bodek 
universal fit) to bin the data at effective 𝐪  or 𝑄#.

• 𝜈 ranges from 𝜈 = 0	𝐺𝑒𝑉 to  the end of the resonance region where 𝑊 =
2.0	𝐺𝑒𝑉.

• Calcium, Aluminum, … : analysis in progress.

𝑹𝑳	𝑹𝑻 Extraction Project

1
0
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Compare to Previous Extractions1~4 at 3 Fixed in 𝐪  Bins:
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𝑹𝑳	𝑹𝑻	Extraction: More Details
• Analysis in fixed 𝐪  (or in fixed 𝑄#) bin:

1. Bin all cross-section data in 𝐪  (or 𝑄#);

2. Apply Coulomb corrections; apply bin-centering corrections. 

For 𝜈 < 50𝑀𝑒𝑉: bin-centered in 𝐸0 (excitation energy);

For 𝜈 > 50𝑀𝑒𝑉: bin-centered in 𝑊# (final state invariant mass squared);

Later convert 𝐸0 and 𝑊# to 𝜈.

3. Bin again in 𝜈.

4. Finally, perform Rosenbluth fit to subdivisions of data to extract 𝑅$  and 𝑅".

• Note: Christy-Bodek fit is universal, while Rosenbluth fit uses only a small 

subset.
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𝑹𝑳	𝑹𝑻	Extraction: More Details
• Coulomb correction1: account for 12C effective potential,

– There	exists	“focusing	factor”	𝐹@AB# =
))45*++

))

#
	that	modifies	𝜎%.

– For	12C,	𝑉C@@ = 3.1𝑀𝑒𝑉; 𝐸D,C@@ = 𝐸D + 𝑉C@@, 𝐸C@@! = 𝐸! + 𝑉C@@. 

• Bin-centering correction factor:

– 𝐶 =
FG'/0*12*3

+42 4&!
𝐪0*12*3
.0*12*3

!
G5/0*12*3
+42

FG'/6727
+42 4&!

𝐪6727
.6727

!
G5/6727
+42

→ ΣHIJ2BCJKCLC; = C	×	Σ	.

• Our fixed 𝐪  bin-centers:	0.100, 0.148, 0.167, 0.205, 0.240, 0.300, 0.380,	
0.475, 0.570, 0.649, 0.756, 0.991, 1.659, 1.921, 2.213, 2.500, 2.783, 3.500	𝐺𝑒𝑉

•  Our fixed 𝑄# bin-centers: 0.00 photo	production , 0.010, 0.020, 0.026,	
0.040, 0.056, 0.093, 0.120, 0.160, 0.265, 0.38, 0.50, 0.80, 1.25, 1.75,	

2.25, 2.75, 3.25, 3.75	𝐺𝑒𝑉2	
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Theories and MC Generators comparison
• We compare our 𝑅$, 𝑅"	fit and extracted values to:

– 1st  principle nuclear physics theories’ predictions: 
– GFMC (Green’s Function Monte Carlo)
– ED-RMF (Energy Dependent Relativistic Mean Field)
– STA-QMC (Short Time Approximation Quantum Monte Carlo)

– MC generated predictions:
– NuWro
– ACHILLES
– Correlated-Fermi-Gas 
– GENIE (manual extractions)

We gratefully thank the authors that provide us their predictions! 
(See the list of reference)
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Theories 
Comparison in 𝐪 
Bins: ED-RMF, 
STA-QMC, GFMC
𝐪  values: 0.3,	0.38,	
0.470,	0.570,	0.649	𝐺𝑒𝑉
Note: 
• All 3 predictions are 

for 1p1h single 
nucleon final states.

• All 3 predictions 
include contributions 
from 1-body and 2-
body currents.

• GFMC is 
computationally 
expensive, only 
available for 0.3 ≤
|𝐪| ≤ 0.57	𝐺𝑒𝑉.

• STA-QMC is only 
valid for 0.3 ≤ |𝐪| ≤
0.76	𝐺𝑒𝑉.
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Theories 
Comparison in 
Excitation 
Region
( 𝐪  Bins) 

Note: 
• ED-RMF, available 

for all 𝐪 , has good 
agreement with 
data in QE and Ex 
region (is now 
implemented in 
NEUT generator).
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MC generators 
Comparison in 𝐪 
Bins: NuWro-SF, 
NuWro-SF-FSI, 
CFG, ACHILLES 
𝐪  values: 0.1,	0.148,	
0.167,	0.205,	0.240	𝐺𝑒𝑉

Note: 
• Here NuWro uses 

electron-mode that 
has QE-scattering 
only; not accounting 
for 2-body currents 
and the interference 
between 1-body and 
2-body currents 
(which enhance 𝑅%).

• NuWro-SF-FSI agrees 
with data better than 
NuWro-SF.
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𝐪  values: 0.300,	0.380,	
0.470,	0.570,	0.649	𝐺𝑒𝑉

Note: 
• ACHILLES models the 

contribution of 2-body 
currents, so it’s in better 
agreement than NuWro-
SF-FSI.

• ACHILLES predictions are 
only available for 𝐪 >
0.5	𝐺𝑒𝑉.

• CFG (Correlated-Fermi-
Gas) is a simpler model, 
works better at higher 𝐪 .

MC generators 
Comparison in 𝐪 
Bins: NuWro-SF, 
NuWro-SF-FSI, 
CFG, ACHILLES 
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𝐪  values: 0.756,	0.991,	
1.619,	1.921,	2.213	𝐺𝑒𝑉

Note:
• FSI effects above |𝐪| =

0.65	𝐺𝑒𝑉 is small, so 
NuWro-SF-FSI is the 
same as NuWro-SF at 
higher |𝐪|.

MC generators 
Comparison in 𝐪 
Bins: NuWro-SF, 
NuWro-SF-FSI, 
CFG, ACHILLES 
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Comparison with 
GENIE-LFG, GENIE-
SUSA, and ED-RMF in 
𝑄! Bins
𝑄8 values: 0.026,	0.040,	0.056,	
0.093,	0.12	Ge𝑉8 

Note: 
• GENIE-LFG (Local Fermi Gas) is  

GENIE v3 with tune G18-10a-00-

000. It uses LFG for the nucleon 
momentum distribution for QE 
scattering and an empirical 
Meson Exchange Currents 
(MEC) model (preliminary).

• GENIE-SUSA (Super Scaling 
Approach) is GENIE v3 with 
tune GEM21-11a-00-000. It also 
uses LFG but with a modified 
SUSA to model QE and MEC 
(preliminary).
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Note: 
• For now, we are comparing 

with GENIE at 𝑄8 >
0.026	𝐺𝑒𝑉8; we are 
investigating lower 𝑄8. 

• Unlike other MC predictions, 
GENIE’s 𝑅$	𝑅% values shown 
are extracted with Rosenbluth 
separation using GENIE 
generated events/cross-
sections.

• At present, GENIE is the only 
generator that includes the 
resonance and inelastic 
continuum in its predictions.

Comparison with 
GENIE-LFG, GENIE-
SUSA, and ED-RMF in 
𝑄! Bins
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Note: 
• GENIE-SUSA is closer to data 

than GENIE-LFG in QE region. 
However, neither are as good 
as ED-RMF’s prediction.

• At higher 𝜈, GENIE has 
unphysical negative 𝑅$ values.

• As seen in 𝑅% plots, GENIE’s 
Δ 1232  peak is shifted to 
higher 𝜈 than data. 
• This can be remedied by 

using an “effective optical 
potential.”

Comparison with 
GENIE-LFG, GENIE-
SUSA, and ED-RMF in 
𝑄! Bins
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ED-RMF in Excitation 
Region in 𝑄! Bins 
Note: 
• Among all QE theoretical 

predictions, ED-RMF is 
the only one that includes 
nuclear excitation 
contributions.

• ED-RMF includes the 
enhancement of 𝑅% from 
the interference of 1b 
and 2b currents (leading 
to 1p1h final state). 

• However, ED-RMF 
doesn’t include 
enhancement of 𝑅%	from 
2p2h final states 
(originating from 2b 
currents). Therefore, a 
model for the 
contribution of 2p2h final 
states to 𝑅% is needed.



• We compare to GFMC, STA-QMC, ED-RMF’s theoretical predictions of 𝑅$	and 𝑅% 	in 
QE region. ED-RMF has the best description of data overall and is available for all 
values of 𝐪  (or 𝑄&) and 𝜈.

• We compare to GENIE (extracted from MC generated cross-sections), NuWro, 
ACHILLES, and CFG’s MC predictions of 𝑅$	and 𝑅% . Thoughts on MC tuning:

– One can implement effective optical potentials specific to QE and Delta processes;
– Can implement a longitudinal quenching, transverse enhancement factors that account for 1b 2b 

currents interference;
– Can add a model in Excitation region for nuclear excitation.
– Alternatively, use ED-RMF as implemented in NEUT. 
– Note: nuclear excitations for Ex < 20MeV are not modeled by ED-RMF, because these excitations only 

decay to 𝛼 particles and 𝛾’s.

• The 𝑅$	and 𝑅% 	extractions cover a  large kinematic range. The values are in good 
agreement with the  Christy-Bodek Universal fit to all cross-section values.  The 
universal fit covers an even larger kinematic range.

– In addition to individual 𝑅$ , 𝑅%  extractions, the fit also provide a simple way to 
validate electron and neutrino MC generators over a larger kinematic range.
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(Inconsistent with other 
datasets)

Data sets and normalizations:
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