Constraints on flavor-dependent long-range interactions of high-energy astrophysical neutrinos

Sudipta Das

Institute of Physics, Bhubaneswar, India







# **NuFACT 2024**



AGN, Gamma ray bursts, Supernovae, Galaxy clusters...

www.forbes.com



AGN, Gamma ray bursts, Supernovae, Galaxy clusters...

Highest energy among all sources

TeV - EeV energy scale

MPC to GPC distances Travel longest distances

Weakly interacting

Travel almost straight from the source.

Excellent Massenger for various Astrophysical activities.

www.forbes.com



www.forbes.com

- Neutrino flavor oscillation  $P_{\alpha\beta} = \left| \sum_{i=1}^{3} U_{\alpha i} \exp\left[ -i \frac{\Delta m_{i1}^2 L}{2E} \right] U_{\beta i}^* \right|^2$   $\int_{\sqrt{2}} \Delta m_{ij}^2 L/(2E) \gg 1$   $\bar{P}_{\alpha\beta} = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$ 
  - Neutrino flavor compostions

 $(f_e: f_\mu: f_\tau)_{\mathbf{S}} = (1:2:0)$  $\bigvee \bar{P}_{\beta\alpha} f_{\beta,\mathbf{S}}$  $(f_e: f_\mu: f_\tau)_{\oplus} \approx (1:1:1)$ 

<u>Assumption:</u> Neutrino propagating in vacuum



Neutrino interaction with the surrounding matter

• Neutrino flavor oscillation

$$\bar{P}_{\alpha\beta}(U_{\alpha i}) \implies \bar{P}'_{\alpha\beta}(U_{\alpha i}, V, E_{\nu})$$

• Neutrino flavor compostions

$$(f_e: f_\mu: f_\tau)_{\mathcal{S}} = (1:2:0)$$
$$\bigcup \bar{P}_{\beta\alpha} f_{\beta,\mathcal{S}}$$
$$(f_e: f_\mu: f_\tau)_{\oplus} = x: y: z$$

• Deviation from the 1:1:1 may hint toward a new interaction

#### Neutrino-matter interaction in Z' models

 $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)'_X$ 

 $\mathcal{L}_{Z'} = -g_{Z'} \left( a_u \, \bar{u} \gamma^{\alpha} u + a_d \, \bar{d} \gamma^{\alpha} d + a_e \, \bar{e} \gamma^{\alpha} e \right. \\ \left. + b_e \, \bar{\nu}_e \gamma^{\alpha} P_L \nu_e + b_\mu \, \bar{\nu}_\mu \gamma^{\alpha} P_L \nu_\mu + b_\tau \, \bar{\nu}_\tau \gamma^{\alpha} P_L \nu_\tau \right) Z'_{\alpha}$ 



#### Classifications of the Models

Flavor-dependent Interaction potential:  $V_{\alpha\alpha}^f \propto \frac{1}{2} a_f b_{\alpha} V_0^f$ Class - I Class - III Class - II Class - IV  $\begin{pmatrix} 0 & \\ & 0 & \\ & \bullet \end{pmatrix}$  $\left(\begin{array}{c}\bullet\\&0\\&&0\end{array}\right)\qquad\left(\begin{array}{c}\bullet\\&\bullet\\&&0\end{array}\right)$  $B - 3L_{\tau}$  $B - 3L_{\mu}$  $L_e - L_\mu$  $B-3L_e$  $L - 3L_{\tau}$  $L - 3L_{\mu}$  $L - 3L_e$  $B - \frac{3}{2}(L_{\mu} + L_{\tau})$ Class - IV Class - VI  $L_e - \frac{3}{2}(L_\mu + L_\tau)$ 

## Long-range neutrino matter interaction with U(1)' models

Matter particles inside the interaction range will contribute to the potential.



Interaction range  $\propto \frac{1}{m_{Z'}}$ 

$$V_0^f = g_{Z'}^2 \frac{n_f}{4\pi d} e^{-m_{Z'} d}$$

$$V_f(m_{Z'}, G') = \left(V_f^{\oplus} + V_f^{\mathbb{C}} + V_f^{\odot} + V_f^{\mathrm{MW}} + V_f^{\mathrm{cos}}\right)$$

$$V_{\text{LRI},\alpha} = b_{\alpha} \sum_{f=e,p,n} a_f V_f(m_{Z'}, G')$$

Bustamante, Agarwalla, PRL, 2019

## Long-range neutrino matter interaction with U(1)' models



# Neutrino flavor composition in the presnece of long-range potential

• Neutrino propagation Hamiltonian

 $\mathbf{H} = \mathbf{H}_{\mathrm{vac}} + \mathbf{V}_{\mathrm{mat}} + \mathbf{V}_{\mathrm{LRI}}$  New potential

 $\mathbf{H}_{\text{vac}} = \frac{1}{2E} \mathbf{U} \operatorname{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) \mathbf{U}^{\dagger}, \qquad \mathbf{V}_{\text{mat}} = \operatorname{diag}(V_{\text{CC}}, 0, 0),$ 

• Neutrino flavor transition probability

$$\Delta \tilde{m}_{ij}^2 L/(2E) \gg 1$$

$$\bar{P}_{\alpha\beta} = \sum_{i=1}^{5} |U_{\alpha i}^{m}|^{2} |U_{\beta i}^{m}|^{2} . \qquad \qquad U^{m} \to U^{m}(\theta_{23}^{m}, \theta_{13}^{m}, \theta_{12}^{m}, \delta^{m}) \Longrightarrow \xrightarrow{\text{Modified}}_{\text{Mass-mixing parameters}}$$

• Neutrino flavor compostion at Earth

$$\begin{split} f_{\alpha,\oplus} &= \sum_{\beta=e,\mu,\tau} \bar{P}_{\beta\alpha} f_{\beta,\mathrm{S}} , \quad \begin{array}{l} f_{\alpha,\oplus} \to (f_e : f_\mu : f_\tau)_{\oplus} \\ f_{\alpha,S} \to (f_e : f_\mu : f_\tau)_S \\ \end{split} \\ \begin{array}{l} \text{Assumed flavor} \\ \text{composition} \\ \text{At source} \\ \end{split} \\ \begin{array}{l} (f_e : f_\mu : f_\tau)_{\mathrm{S}} = (1 : 2 : 0) \\ \end{array} \\ \begin{array}{l} \text{From } pp \, \text{or } p\gamma \text{ collision} \\ \pi^+ \to \mu^+ + \nu_\mu \\ \mu^+ \to \bar{\nu}_\mu + e^+ + \nu_e \\ \end{array} \end{split}$$

#### Neutrino Flavor compostion



7

#### Neutrino Flavor compostion



#### Neutrino Flavor compostion













1.0

0.0

# Statistical Analysis

• Posterior probability density of the long-range potential :

$$\mathcal{P}(V_{\alpha\beta}) = \int d\boldsymbol{\vartheta} \mathcal{L}\left(\langle \boldsymbol{f}_{\oplus} (V_{\alpha\beta}, \boldsymbol{\vartheta}) \rangle\right) \pi(\boldsymbol{\vartheta}) \pi(V_{\alpha\beta})$$

$$\boldsymbol{\vartheta} \equiv (\sin^2 \theta_{12}, \sin^2 \theta_{23}, \sin^2 \theta_{13}, \delta_{\rm CP}) \ , \quad \langle \boldsymbol{f}_{\oplus} \rangle \equiv (\langle f_{e,\oplus} \rangle, \langle f_{\mu,\oplus} \rangle, \langle f_{\tau,\oplus} \rangle)$$

• Estimated and projected neutrino flavor composition from neutrino telescopes

| Observation epoch | Neutrino telescopes       | Neutrino mixing parameters     |
|-------------------|---------------------------|--------------------------------|
| 2020  (estimated) | IC 8 yr                   | NuFit 5.1 $(2021)$             |
| 2040  (projected) | IC 15 yr + IC-Gen2 10 yr  | NuFit $5.1 + JUNO + DUNE + HK$ |
| 2040  (projected) | Combined $\nu$ telescopes | NuFit $5.1 + JUNO + DUNE + HK$ |

Song, Li, Arguelles, Bustamante, Vincent, 2020

IC 8 yr : estimated through-going + HESE events at IceCube

IC + IC-Gen2 : projected 15 yr IceCube + 10 yr IceCube-Gen2 10 yr

Improvements in  $\theta_{12}, \theta_{23}, \delta_{CP}$ 

Combined telescopes : projected data from IceCube+Gen2+KM3NeT +GVD+P-ONE+TAMBO

#### Constraints on long-range potential



|           | Upper limit (95% C.L.) on potential $[10^{-19} \text{ eV}]$ |                       |                           |
|-----------|-------------------------------------------------------------|-----------------------|---------------------------|
| Models    | IC 8 yr                                                     | IC 15 yr + Gen2 10 yr | Combined $\nu$ telescopes |
| Class - I | _                                                           | _                     | _                         |
| Class-II  | 3.20                                                        | 1.19                  | 1.04                      |
| Class-III | 4.16                                                        | 1.99                  | 1.76                      |
| Class-IV  | 3.11                                                        | 1.11                  | 1.08                      |
| Class-V   | 4.41                                                        | 1.69                  | 1.63                      |
| Class-VI  | 1.79                                                        | 0.731                 | 0.702                     |

#### Constraints in coupling-mass plane



Work under progress... Sanjib Kumar Agarwalla, SD, Ashish Narang

# Summary

• We probe the possible new neutrino-matter long-range interactions (LRI) induced by anomaly-free U(1)' models.

- Neutrino flavor composition estimates from IceCube and other neutrino telescopes can constrain certain models.
- We find that using the estimated current flavor sensitivity of IceCube and current mixing parameter uncertainties, high-energy astrophysical neutrinos could tightly constrain long-range interactions, surpassing existing limits.

# Thank You





Class-II models, NMO

IceCube 8 yrs estimates (year 2020) : Estimated sensitivity to flavor composition using HESE+through going events in IceCube.

IceCube 15yrs + Gen2 10 yrs projections (year 2040) : 15 years projeted sensitivity of IceCube and 10 years projected sensitiity of IceCube-Gen2 using HESE and through going events.

**Projected data from the combined telescopes (year 2040) :** Apart from IceCube-Gen2, the next generation neutrino telescopes used for the our analysis are KM3NeT, GVD, P-ONE, and TAMBO.

• 2040 projections for the other neutrino telescopes based on the projections for IceCube-Gen2.

$$\ln \mathcal{L}_{\rm comb.} = \Xi_{\rm S} \ln \mathcal{L}_{\rm Gen2-10yr} + \ln \mathcal{L}_{\rm IC-15\,yr} + \ln \mathcal{L}_{\rm TAMBO}$$

$$\Xi_{S} = \frac{\Xi_{\text{Gen2}-10\text{yr}} + \Xi_{\text{KM3NeT}} + \Xi_{\text{GVD}} + \Xi_{\text{P-ONE}}}{\Xi_{\text{Gen2}-10\text{yr}}}$$
$$-2\ln \mathcal{L}_{\text{TAMBO}} = \frac{(N_{\nu_{\tau}} - \bar{N}_{\nu_{\tau}})^{2}}{\bar{N}_{\nu_{\tau}}}$$

$$\Xi_{\text{Gen2-10yr}} = 81.6 \text{ km}^{3} \text{ yr}$$
  
 $\Xi_{\text{KM3NeT}} = 42.1 \text{ km}^{3} \text{ yr}$   
 $\Xi_{\text{GVD}} = 24.3 \text{ km}^{3} \text{ yr}$   
 $\Xi_{\text{P-ONE}} = 31.6 \text{ km}^{3} \text{ yr}$ 

0

- Alternative flavor composition choices : We use only one canonical choice of the flavor ratio at source,  $(1:2:0)_S$ . our methods are general and applicable also for other choices of flavor ratio at the source.
- Energy dependence of the flavor composition : Our analysis based on the estimated flavor composition at Earth, assuming it is energy independent. In principle, it can be energy dependent.
- **Computing neutrino propagation :** We compute the long-range matter potential at the location where the neutrinos are detected, at IceCube. Potential can be calculated for each point of the propagating neutrinos along the trajectory.
- Flavor-measurement capabilities of upcoming detectors : Our forecasts for the upcoming neutrino telescopes assume the capabilities to measure the flavor composition will be similar to those of IceCube. This is a necessary assumption, given the absence of their realistic capabilities.