A plethora of long-range neutrino interactions probed by DUNE and T2HK

(Based on JHEP 09 (2024) 055)

Pragyanprasu Swain Institute of Physics, Bhubaneswar, India

Collaborators: Sanjib Kumar Agarwalla, Mauricio Bustamante, and Masoom Singh

NuFact 2024 The 25th International Workshop on Neutrinos from Accelerators Argonne National Laboratory, Illinois, USA

September $16^{\rm th}-21^{\rm st},2024$

Standard neutrino-matter interactions

Model: $SU(3)_C \times SU(2)_L \times U(1)_Y$

Plethora of long-range neutrino interactions probed by DUNE and T2HK

$$Model: SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'$$
$$U(1)' = U(1)_{B-L} \times U(1)_{L\mu-L\tau} \times U(1)_{L\mu-L\epsilon}$$

Anomaly free charge

$$c_{\rm BL}(B-L) + c_{\mu\tau}(L_{\mu}-L_{\tau}) + c_{\mu e}(L_{\mu}-L_{e})$$

JHEP 07 (2012) 083, JHEP 02 (2019) 082, JHEP 01 (2021) 114 arXiv: 1812.04067, SciPostPhys.6.3.038

$$\begin{array}{l} a_{u} = a_{d} = c_{\rm BL}/3, a_{e} = b_{e} = -(c_{\rm BL} + c_{\mu e}), \\ b_{\mu} = -c_{\rm BL} + c_{\mu e} + c_{\mu \tau}, \text{ and } b_{\tau} = -(c_{\rm BL} + c_{\mu \tau}) \end{array}$$

Neutrino oscillation is not affected by flavor-universal symmetries — e.g. B - L — hence we focus on flavor dependent ones.

U(1) are a set of the set of t	U(1)' charge						
U(1) symmetry	a_u	a_d	a_e	b_e	b_{μ}	$b_{ au}$	
$B - 3L_e$	$\frac{1}{3}$	$\frac{1}{3}$	-3	-3	0	0	
$L - 3L_e$	0	0	-2	$^{-2}$	1	1	
$B - \frac{3}{2}(L_{\mu} + L_{\tau})$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$-\frac{3}{2}$	$-\frac{3}{2}$	
$L_e - \frac{1}{2}(L_\mu + L_\tau)$	0	0	1	1	$-\frac{1}{2}$	$-\frac{1}{2}$	
$L_e + 2L_\mu + 2L_\tau$	0	0	1	1	2	2	
$B_y + L_\mu + L_\tau$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	1	1	
$B - 3L_{\mu}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	-3	0	
$L - 3L_{\mu}$	0	0	1	1	-2	1	
$B - 3L_{\tau}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0	0	-3	
$L - 3L_{\tau}$	0	0	1	1	1	-2	
$L_e - L_\mu$	0	0	1	1	-1	0	
$L_e - L_\tau$	0	0	1	1	0	-1	
$L_{\mu} - L_{\tau}$	0	0	0	0	1	-1	
$B - L_e - 2L_\tau$	$\frac{1}{3}$	$\frac{1}{3}$	-1	-1	0	-2	

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ■ = つへで

New neutrino-matter interactions from U(1)' symmetries

Long-range interaction (LRI): ultralight Z'

• Range of interaction $\sim 1/m_{Z'}$

Neutrinos on Earth feel the potential due to the matter inside the Moon, Sun, Milky Way, and the cosmological distribution via long-range interactions.

$$V_f = V_f^{\oplus} + V_f^{\textcircled{}} + V_f^{\odot} + V_f^{\mathrm{MW}} + V_f^{\mathrm{cos}}$$

$$\begin{split} N_{e, (\ensuremath{\underline{0}}\xspace = N_{p, (\ensuremath{\underline{0}}\xspace = N_{n, (\ensuremath{\underline{0}}\xspace = N_{n, (\ensuremath{\underline{0}}\xspace = N_{p, (\ensuremath{\underline{0}}\xspace = N_$$

Long-range interaction potential

Texture	T(1) amount at my	Texture to place limits,		
of \mathbf{V}_{LRI}	U(1) symmetry	$\mathbf{V}_{\mathrm{LRI}} = V_{\mathrm{LRI}} \cdot \mathrm{diag}(\ldots)$		
	$B - 3L_e$	diag(1, 0, 0)		
	$L - 3L_e$	diag(1, 0, 0)		
	$B - \frac{3}{2}(L_{\mu} + L_{\tau})$	diag(1, 0, 0)		
	$L_e - \frac{1}{2}(L_\mu + L_\tau)$	diag(1, 0, 0)		
(0)	$L_e + 2L_{\mu} + 2L_{\tau}$	diag(-1, 0, 0)		
	$B_y + L_\mu + L_\tau$	diag(-1, 0, 0)		
$\begin{pmatrix} 0 & \\ & \bullet \\ & & 0 \end{pmatrix}$	$B - 3L_{\mu}$	$\operatorname{diag}(0, -1, 0)$		
	$L - 3L_{\mu}$	diag(0, -1, 0)		
	$B - 3L_{\tau}$	$\operatorname{diag}(0,0,-1)$		
	$L - 3L_{\tau}$	$\operatorname{diag}(0,0,-1)$		
	$L_e - L_\mu$	$\operatorname{diag}(1,-1,0)$		
	$L_e - L_\tau$	$\operatorname{diag}(1,0,-1)$		
	$L_{\mu} - L_{\tau}$	$\operatorname{diag}(0, 1, -1)$		
	$B - L_e - 2L_\tau$	$\operatorname{diag}(0, 1, -1)$		

- $\mathbf{V}_{\mathrm{LRI}} = \mathrm{diag}(V_{\mathrm{LRI},e}, V_{\mathrm{LRI},\mu}, V_{\mathrm{LRI},\tau})$
- Yukawa potential, mediated by Z':

$$\label{eq:VZ',f} V_{Z',f} = G'^2 \frac{N_f}{4\pi d} e^{-m} Z'^{\ d} \ ,$$

$$f \ (= e, p \ {\rm or} \ n), \forall$$
 symmetries but $L_{\mu} \ - \ L_{\tau}$

• Yukawa potential, caused by Z - Z' mixing:

$$\begin{bmatrix} V_{ZZ',n} = G'^2 \frac{e}{\sin \theta_W \cos \theta_W} \frac{N_n}{4\pi d} e^{-m} Z'^{d} \\ G' = \begin{cases} g_{Z'} &, \nu \text{ int, via } Z' \\ \sqrt{g_{Z'}(\xi - \sin \theta_W \chi)} &, \nu \text{ int, via } Z - Z' \text{ mixing} \end{cases}$$

• General potential regardless of the source:

$$V_{\text{LRI},\alpha}(m_{Z'},G') = b_{\alpha} \sum_{f=e,p,n} \kappa_f V_f(m_{Z'},G')$$

• Total LRI potential, $V_{LRI,\alpha}$

$$\begin{split} &= b \, \alpha \left[\left(\kappa_e \, + \, \kappa_p \, \frac{N_{p, \oplus}}{N_{e, \oplus}} + \, \kappa_n \, \frac{N_{n, \oplus}}{N_{e, \oplus}} \right) V_e^{\oplus} \right. \\ & \left. + \, (\oplus \rightarrow \mathbb{C}) \, + \, (\oplus \rightarrow \odot) \right. + \, (\oplus \rightarrow \mathrm{MW}) \\ & \left. + (\oplus \rightarrow \cos) \right] \, . \end{split}$$

The potential due to protons and neutrons are weighed relative to that of electrons. $(\Box \mapsto (\partial P) + (\Xi \mapsto (\Xi) \mapsto (\Xi) = (O \cap (C))$

Impact of Long-Range Interaction on Neutrino Oscillation

 $\mathbf{H} = \mathbf{H}_{\mathrm{vac}} + \mathbf{V}_{\mathrm{mat}} + \mathbf{V}_{\mathrm{LRI}}$

$$\mathbf{H}_{\text{vac}} = \frac{1}{2E} \mathbf{U} \operatorname{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) \mathbf{U}^{\dagger}$$

$$\mathbf{V}_{\text{mat}} = \text{diag}(V_{\text{CC}}, 0, 0),$$
$$V_{\text{CC}} \approx 7.6 \cdot Y_e \cdot 10^{-14} \left(\frac{\rho_{\text{avg}}}{\text{g cm}^{-3}}\right) \text{eV},$$

 $Y_e \equiv n_e/(n_p+n_n),$ and $\rho_{\rm avg}$ is 2.848 g cm $^{-3}$ for DUNE, 2.8 g cm $^{-3}$ for T2HK.

$$\mathbf{V}_{\mathrm{LRI}} = \mathrm{diag}(V_{\mathrm{LRI},e}, V_{\mathrm{LRI},\mu}, V_{\mathrm{LRI},\tau})$$

Oscillation probability :
$$P_{\nu_{\alpha} \to \nu_{\beta}} = \left| \sum_{i=1}^{3} \tilde{U}_{\alpha i} \exp \left[-\frac{\Delta \tilde{m}_{i1}^2 L}{2E} \right] \tilde{U}_{\beta i}^* \right|^2$$

Under the approximation that $\tilde{\theta}_{12}$ saturates very quickly to 90°,

$$\begin{split} P_{\nu_{\mu} \to \nu_{e}} &\approx \sin^{2} \tilde{\theta}_{23} \sin^{2}(2\tilde{\theta}_{13}) \sin^{2} \left[1.27 \frac{(\Delta \tilde{m}_{32}^{2}/\mathrm{eV}^{2})(L/\mathrm{km})}{E/\mathrm{GeV}} \right] \\ P_{\nu_{\mu} \to \nu_{\mu}} &\approx 1 - \sin^{2}(2\tilde{\theta}_{23}) \cos^{2} \tilde{\theta}_{13} \sin^{2} \left[1.27 \frac{(\Delta \tilde{m}_{31}^{2}/\mathrm{eV}^{2})(L/\mathrm{km})}{E/\mathrm{GeV}} \right] \end{split}$$

Running param.

Pragyanprasu Swain

Details of experimental setup

DUNE

T2HK

	DUNE 1	T2HK ²
Detector mass	40 kt LArTPC	187 kt WC
Baseline	1285 km	295 km
Proton energy	120 GeV	80 GeV
Proton beam power	1.2 MW	1.3 MW
P.O.T./year	1.1×10^{21}	2.7×10^{21}
ν Beam type	Wide-band, on-axis	Narrow-band, off-axis (2.5°)
Run time $(\nu + \bar{\nu})$	5 yrs + 5 yrs	2.5 yrs + 7.5 yrs

¹arXiv: 2103.04797

²arXiv: 1611.06118

Pragyanprasu Swain

三日 のへで

Parameter	Best-fit value	3σ range	Statistical treatment		
$\theta_{12} [^{\circ}]$	33.45	31.27-35.87	Fixed to best fit		
$ heta_{13} [^\circ]$	8.62	8.25-8.98	Fixed to best fit		
	(8.61)	(8.24–9.02)	Fixed to best int		
$ heta_{23} \ [^\circ]$	42.1	39.7-50.9	Minimized over 3σ range		
	(49.0)	(39.8–51.6)	Winninzed over 50 range		
$\delta_{\mathrm{CP}} [^{\circ}]$	230	144–350	Minimized over 3σ range		
	(278)	(194–345)	Willinitzed over 50 range		
Δm_{21}^2	7.42	6.82-8.04	Fixed to best fit		
$\overline{10^{-5} \mathrm{eV^2}}$		0.02 0.01			
$\frac{\Delta m^2_{31}}{10^{-3}{\rm eV}^2}$	2.51	2.430-2.593	Minimized over 2 renge		
	(-2.41)	(-2.506–(-2.329))	Winninized over 50 Tange		

Table: Values of oscillation parameters used in our analysis for normal mass ordering, NMO (inverted mass ordering, IMO).

http://www.nu-fit.org arXiv: 2007.14792

Pragyanprasu Swain

Impact on oscillation probability and event rates

 $\text{DUNE sensitivity} \rightarrow V_{\text{LRI}} \approx (\mathbf{H}_{\text{vac}})_{\tau\tau} \in [3.8 \cdot 10^{-14}, 1.4 \cdot 10^{-12}] \text{ eV}, \text{ for energy} \in [0.5, 18] \text{ GeV}_{\text{LRI}} \implies 0 < \infty$

Impact on oscillation probability and event rates

T2HK sensitivity $\rightarrow V_{\text{LRI}} \approx (\mathbf{H}_{\text{vac}})_{\tau\tau} \in [2.3 \cdot 10^{-13}, 6.8 \cdot 10^{-12}] \text{ eV}$, for energy $\in [0.1, 3]$ GeV is a sensitivity $\rightarrow V_{\text{LRI}} \approx (\mathbf{H}_{\text{vac}})_{\tau\tau} \in [2.3 \cdot 10^{-13}, 6.8 \cdot 10^{-12}]$ eV, for energy $\in [0.1, 3]$ GeV is a sensitivity $\rightarrow V_{\text{LRI}} \approx (\mathbf{H}_{\text{vac}})_{\tau\tau} \in [2.3 \cdot 10^{-13}, 6.8 \cdot 10^{-12}]$ eV.

Results: Constraints on LRI potential

$$\Delta\chi^2_{\rm con}(V_{\rm LRI}) = \min_{\{\boldsymbol{\theta}, o\}} \left[\chi^2_{\rm test}(V_{\rm LRI} \neq 0) - \chi^2_{\rm true}(V_{\rm LRI} = 0) \right]$$

$$\boldsymbol{\theta}
ightarrow heta_{23}$$
, δ_{CP} , $|\Delta m^2_{31}|$ & $o
ightarrow \mathrm{sign}(\Delta m^2_{31})$

- The dips in the test statistic are due to the degeneracies between $V_{\rm LRI}$, θ_{23} , & $\delta_{\rm CP}$ in DUNE and between $V_{\rm LRI}$ & sign (Δm_{31}^2) in T2HK.
- Combining DUNE and T2HK lifts the degeneracies improving the bounds.

イロト イロト イヨト

The limits lie around 20% of (H_{vac})_{ττ}.

Results: Ultimate constraints on the LRI potential

• The symmetries which mostly affect $\mu - \tau$ sector are tightly constrained. \Downarrow

Primary contribution from $\nu_{\mu} \rightarrow \nu_{\mu} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ (Higher event rates)

 The symmetries which mostly affect electron sector are weakly constrained.

Primary contribution from $\nu_{\mu} \rightarrow \nu_{e} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ (Lower event rates)

 DUNE and T2HK may constrain the new matter potential to a level comparable to the standard-oscillation terms, roughly 10⁻¹⁴-10⁻¹³ eV, regardless of what is the U(1)' symmetry responsible for inducing the new interaction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results: Constraints on G' vs. $m_{Z'}$ plane

Pragyanprasu Swain

$$\Delta \chi^2_{\rm disc}(V_{\rm LRI}) = \min_{\{\boldsymbol{\theta}, o\}} \left[\chi^2_{\rm test}(V_{\rm LRI} = 0) - \chi^2_{\rm true}(V_{\rm LRI} \neq 0) \right]$$

Pragyanprasu Swain

Results: Distinguishing between symmetries

- The separation is clearer between symmetries whose matter potential matrices, $V_{\rm LRI}$, have different textures.
- The separation is blurred between symmetries whose matter potentials have similar texture, e.g., between B - 3L_e and L_e + 2L_μ + 2L_τ.
- Separation is null between symmetries whose matter potentials have equal texture, e.g., between $B 3L_e$ and $L 3L_e$.
- $B L_e 2L_\tau$ and $L_\mu L_\tau$ are easily separable from others.

Pragyanprasu Swain

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

Summary

- The high precision detectors and well characterized beams in the long-baseline experiments like DUNE and T2HK allow them to identify even a tiny deviation from the Standard Model.
- For the first time, we explore the sensitivity of DUNE and T2HK to a wide variety of symmetries, built from combinations of lepton and baryon numbers, each of which induces new flavor-dependent neutrino-matter interactions that affect oscillations differently.
- We interpret their sensitivity in the context of long-range neutrino interactions, mediated by a new neutral boson lighter than 10^{-10} eV, and sourced by the vast amount of nearby and distant matter in the Earth, Moon, Sun, Milky Way, and beyond.
- We find ample sensitivity: for all symmetries, DUNE and T2HK may constrain the existence of the new interaction even if it is supremely feeble, may discover it, and, in some cases, may identify the symmetry responsible for it.

Thank you for your attention!

Backup Slides

Pragyanprasu Swain

Plethora of long-range neutrino interactions probed by DUNE and T2HK

September 19, 2024 18

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Running of oscillation parameters in presence of LRI

Pragyanprasu Swain

Plethora of long-range neutrino interactions probed by DUNE and T2HK

Resonance energy in presence of LRI

Under one-mass-scale-dominance (OMSD, $\Delta m_{31}^2 L/4E >> \Delta m_{21}^2 L/4E$) approximation,

$$E_{\rm res}^{\rm LRI} \simeq \left[E_{\rm res}^{\rm SI} \right]_{\rm OMSD} \cdot V_{\rm CC} \cdot \left[\frac{1 - \left(\alpha s_{12}^2 c_{13}^2 / \cos 2\theta_{13} \right)}{V_{\rm CC} - \frac{1}{2} (V_{\rm LRI,\mu} + V_{\rm LRI,\tau} - 2V_{\rm LRI,e})} \right]$$

$$\left[E_{\rm res}^{\rm SI}\right]_{\rm OMSD} = \frac{\Delta m_{31}^2 \cos 2\theta_{13}}{2V_{CC}}$$

Illu. syn

Pragyanprasu Swain

Running of oscillation length in presence of LRI

Illu. sym

三日 のへで

Neutrino oscillation probabilities in presence of LRI

September 19, 2024

Event rates in presence of LRI

3 September 19, 2024

= 990

Results: Constraints on LRI potential

Results: Constraints on LRI potential

Pragyanprasu Swain

Statistical method: Poisson χ^2

$$\chi_{e,c}^{2}(V_{\text{LRI}}, \boldsymbol{\theta}, o) = \min_{\{\xi_{s}, \{\xi_{b,c,k}\}\}} \left\{ 2\sum_{i=1}^{N_{e}} \left[N_{e,c,i}^{\text{test}}(V_{\text{LRI}}, \boldsymbol{\theta}, o, \xi_{s}, \{\xi_{b,c,k}\}) - N_{e,c,i}^{\text{true}} \left(1 + \ln \frac{N_{e,c,i}^{\text{test}}(V_{\text{LRI}}, \boldsymbol{\theta}, o, \xi_{s}, \{\xi_{b,c,k}\})}{N_{e,c,i}^{\text{true}}} \right) \right] + \xi_{s}^{2} + \sum_{k} \xi_{b,c,k}^{2} \right\}$$

 $e = \{\text{T2HK, DUNE}\}, c = \{\text{app }\nu, \text{ app }\bar{\nu}, \text{ disapp }\nu, \text{ disapp }\bar{\nu}\}$

$$\boldsymbol{ heta}
ightarrow heta_{23}$$
, δ_{CP} , $|\Delta m^2_{31}|$ & $o
ightarrow \mathrm{sign}(\Delta m^2_{31})$

 ξ_s and $\xi_{b,c,k} \to$ systematic uncertainties on the signal and the k -th background contribution to the detection channel c

$$N_{e,c,i}^{\text{true}} = N_{e,c,i}^{s,\text{true}} + N_{e,c,i}^{b,\text{true}} ,$$
$$N_{e,c,i}^{\text{test}}(V_{\text{LRI}}, \boldsymbol{\theta}, o, \xi_s, \{\xi_{b,c,k}\}) = N_{e,c,i}^{s}(V_{\text{LRI}}, \boldsymbol{\theta}, o)(1 + \pi_{e,c}^{s}\xi_s) + \sum_{k} N_{e,c,k,i}^{b}(\boldsymbol{\theta}, o) \left(1 + \pi_{e,c,k}^{b}\xi_{b,c,k}\right)$$

 $\pi^{s}_{e,c}$ and $\pi^{b}_{e,c,k}$ are normalization errors

	Normalization errors [%]							
Expts.	Signal (π^s)			Background (π^b)				
	ν App.	$\bar{\nu}$ App.	ν Disapp.	$\bar{\nu}$ Disapp.	$\nu_e, \bar{\nu}_e \text{ CC}$	$\nu_{\mu}, \bar{\nu}_{\mu} CC$	$\nu_{\tau}, \bar{\nu}_{\tau} CC$	NC
DUNE	2	2	5	5	5	5	20	10
T2HK	5	5	3.5	3.5	10	10	-	10

$$\mathscr{L}_{ZZ'} = -\frac{1}{2}\sin\chi\hat{Z}'_{\mu\nu}\hat{B}^{\mu\nu} + \delta\hat{M}^2\hat{Z}'_{\mu}\hat{Z}^{\mu}$$

Diagonalization of the kinetic terms and mass terms redefines the fields in terms of physical fields as,

$$\begin{split} A^{\mu} &= \hat{c}_W \, B^{\mu} + \hat{s}_W \, W^{3\,\mu} \\ Z_1^{\mu} &= \cos \xi \left(\hat{Z}^{\mu} - \hat{s}_W \, \sin \chi \, \hat{Z}'_{\mu} \right) + \sin \xi \, \cos \chi \, \hat{Z}'_{\mu} \\ Z_2^{\mu} &= \cos \xi \, \cos \chi \, \hat{Z}'_{\mu} - \sin \xi \left(\hat{Z}^{\mu} - \hat{s}_W \, \sin \chi \, \hat{Z}'_{\mu} \right) \\ \text{where,} \, s_W &= \sin \theta_W, \, \, c_W = \cos \theta_W. \end{split}$$

 A^{μ} is the mass-less photon and Z_{1}^{μ} (\equiv Z), Z_{2}^{μ} (\equiv Z') are the massive gauge bosons.

In the physical basis, relevant neutrino-matter interaction terms in the limit, $\chi << 1$, $\delta \hat{M}^2 << \hat{M}_Z^2$,

$$\begin{aligned} \mathscr{L}_{A} &= -e \, (J_{\text{EM}})_{\mu} \, A^{\mu}, \, \text{with} \, J_{\text{EM}}^{\mu} = J_{W}^{\mu3} + \frac{j_{Y}^{\mu}}{2} \\ \mathscr{L}_{Z_{1}} &= -\left(\frac{e}{s_{W} \, c_{W}} \left((J_{W}^{3})_{\mu} - s_{W}^{2} \, (J_{\text{EM}})_{\mu}\right) + g' \, \xi \, (J_{Z'})_{\mu}\right) Z_{1}^{\mu} \\ \mathscr{L}_{Z_{2}} &= -\left(g' \, (J_{Z'})_{\mu} - (\xi - s_{W} \, \chi) \frac{e}{s_{W} \, c_{W}} \left((J_{W}^{3})_{\mu} - s_{W}^{2} \, (J_{\text{EM}})_{\mu}\right) - e \, c_{W} \, \chi \, (J_{\text{EM}})_{\mu}\right) Z_{2}^{\mu} \end{aligned}$$

Pragyanprasu Swain

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆□ ■ ● ● ●