

2p-2h Cross-Section Systematics in DUNE

Lars Bathe-Peters lars.bathe-peters@physics.ox.ac.uk

17th September, 2024

https://www.dunescience.org/

Primary Science Goals:

• Neutrino Oscillation Measurements $(\delta_{CP}$, the sign of Δm_{31}^2 , θ_{23} and its octant), search for CPV

Motivation and Goal

- Proton Decay Search
- Detection and Measurement of ν_e flux from supernova

 ν Cross Sections

Conclusion and Outlook

FORD Lars Bathe-Peters

UNIVERSITY OF

Introduction

2p-2h Cross Section Systematics in DUNE

2p-2h Models

JNE - NuFact 2024

Systematic Parameters

2

Ancillary Science Goals:

- Beyond-the-Standard-Model Physics (NSIs, LIV, CPT-violation, sterile neutrinos, large extra dimensions, heavy neutral leptons, measurements of tau neutrino appearance)
- Neutrino oscillations with atmospheric neutrinos
- Dark matter searches, neutron-antineutron oscillations
- Rich neutrino interaction program (cross sections, nuclear effects)

3

DEEP UNDERGROUND NEUTRINO EXPERIMENT

DUNE Near Detector

Roles of Near Detector:

- Characterization of beam
- Monitoring of beam
- Tuning of interaction model
- Constrain beam and crosssection models using different off-axis beam positions

DUNE Near Detector Conceptual Design Report

Conclusion and Outlook

Image adapted from: The SAND detector at the DUNE near site

Introduction ν Cross Sections Lars Bathe-Peters

2p-2h Cross Section Systematics in DUNE

2p-2h Models

Motivation and Goal

NuFact 2024

Systematic Parameters

DEEP UNDERGROUND NEUTRINO EXPERIMENT

DUNE Near Detector

Roles of Near Detector:

- Characterization of beam
- Monitoring of beam
- Tuning of interaction model
- Constrain beam and crosssection models using different off-axis beam positions

Image adapted from: The SAND detector at the DUNE near site

Introduction ν Cross Sections Lars Bathe-Peters - 2p-2h Cr

s Sections 2p-2h Models Motiv

2p-2h Cross Section Systematics in DUNE -

Motivation and Goal

Systematic Parameters Conclusion and Outlook

NuFact 2024

DUNE Near Detector Conceptual Design Report

4

• What we measure:

Need to know neutrino energy

5

Nuclear Effects

Neutrino-Nucleus Cross Section

Charged-Current (CC) Interaction Modes

Neutrino-Nucleus Cross Section

Charged-Current (CC) Interaction Modes

CC 2p-2h Neutrino Interaction

Nuclear Effects

Nucleon-Nucleon (N-N) Binding by Meson Exchange Currents

Lars Bathe-Peters

• Yukawa (1955): Proposed field between proton and neutron

20

- Later determined to be a virtual pion mediating a color charge exchange between nucleons
- Three N-N potential regions in dependence on inter-nucleon distance x

Motivation and Goal

2p-2h Cross Section Systematics in DUNE

Figure adapted from Prog.Theor.Phys.Suppl.170:161-184,2007 and Prog.Theor.Phys.Suppl.3:1-12,1956.

NuFact 2024

Systematic Parameters

9

Conclusion and Outlook

Nuclear Effects

Meson Exchange Current Interaction Process

Different Approximations for 2p-2h Calculations

Model	Approach	Vector	Axial	NN correlations	MEC	NN-MEC interference	Relativistic	
Martini	Martini et al.	Yes	Yes	π,g'	Yes (Only ∆ MEC)	Yes	Some ingredients	No
Valencia	Nieves et al.	Yes	Yes	π,ρ,g'	Yes	Yes	Approximations in the WNNπ vertex	No
SuSAv2	Amaro et al. Megias et al.	Yes	Yes	π or already in Superscaling function	Yes	No	Fully Relativistic	Yes

Major differences in NN correlations and NN correlation – MEC interference treatment?

Slide adapted from M. Martini and M. Ericson: Inclusion of multi-nucleon effects in RPA-based calculations for *v*-nucleus scattering. Talk given at ESNT 2p-2h workshop in April 2016.

duction

 ν Cross Sections

ne-Peters - 2p-2h Cross Section Systematics in DUNE

2p-2h Models

Motivation and Goal Systematic Parameters

NuFact 2024

ers Conclusion and Outlook

Different Approximations for 2p-2h Calculations

Model	Approach	Vector	Axial	NN correlations	MEC	NN-MEC interference	Relativistic	
Martini	Martini et al.	Yes	Yes	π,g'	Yes (Only ∆ MEC)	Yes	Some ingredients	No
Valencia	Nieves et al.	Yes	Yes	π,ρ,g′	Yes	Yes	Approximations in the WNNπ vertex	No
SuSAv2	Amaro et al. Megias et al.	Yes	Yes	π or already in Superscaling function	Yes	No	Fully Relativistic	Yes

Major differences in NN correlations and NN correlation – MEC interference treatment?

Slide adapted from M. Martini and M. Ericson: Inclusion of multi-nucleon effects in RPA-based calculations for v-nucleus scattering. Talk given at ESNT 2p-2h workshop in April 2016.

Motivation and Goal

NuFact 2024

GENIE Model Configurations

• Collection of model elements used in the simulation of muon neutrino interactions on argon:

	Valencia CC 2p-2h	SuSAv2 CC 2p-2h	Empirical CC 2p-2h
Set name Model element	G18_10a_00_000	G18_10s_00_000	G18_10e_00_000
Nuclear (Ground-State) Model	Local Fermi Gas	Local Fermi Gas	Local Fermi Gas
Quasi-Elastic (QE) processes	Nieves	Nieves	Nieves
2p-2h (MEC)-processes	Nieves (Valencia)	SuSAv2	Empirical
Resonance (RES) production	Berger-Sehgal	Berger-Sehgal	Berger-Sehgal
Deep Inelastic Scattering (DIS)	Bodek-Yang	Bodek-Yang	Bodek-Yang
Coherent (COH) production	Berger-Sehgal	Berger-Sehgal	Berger-Sehgal
Final-State Interactions (FSI)	INTRANUKE hA 2018	INTRANUKE hA 2018	INTRANUKE hA 2018

- Revisited Valencia model in <u>arXiv:2407.21587</u> to be implemented in GENIE!
- Recently added Martini CC *n*p-*n*h model to GENIE!

 ν Cross Sections

Reference: http://tunes.genie-mc.org/

Introduction

2p-2h Cross Section Systematics in DUNE

2p-2h Models

- NuFact 2024

Systematic Parameters

Motivation and Goal

CC np-nh Martini Model in GENIE

Implementation of the CC *n*p-*n*h Martini model

Plots from L. Russo: Implementation of the npnh model of Martini et al in the GENIE event generator. Poster given at Neutrino2024 in June 2024.

 ν Cross Sections Lars Bathe-Peters

Introduction

2p-2h Models 2p-2h Cross Section Systematics in DUNE

Motivation and Goal

Conclusion and Outlook Systematic Parameters

NuFact 2024

Advertisement - NuSystematics and GENIE Reweight

Tools to Propagate Systematic Modelling Uncertainties

- <u>NuSystematics</u>
 - Custom systematic event reweighting as well as interface to GENIE Reweight
 - Initially developed for DUNE, also used in the SBN program
 - More information
- GENIE Reweight
 - Framework for evaluating model uncertainties via event reweighting

2p-2h Cross Section Systematics in DUNE

Lars Bathe-Peters

Introduction

 ν Cross Sections 2p-2h Models

Motivation and Goal

Systematic Parameters

NuFact 2024

Conclusion and Outlook

2p-2h Modeling Uncertainties

- **Clear separation** between the Empirical and Valencia/SuSAv2 CC 2p-2h models
- **Choose uncertainties** such that the measurement of the oscillation parameters is not biased in case the wrong model is chosen

100 000 events generated

DRD

Introduction

Lars Bathe-Peters

UNIVERSITY OF

NuFact 2024

2p-2h Cross Section Systematics in DUNE

Proton multiplicity

80<u>×10</u>

70

GENIEv3.4.0

G18 10s 00 000 (SuSAv2)

G18_10a_00_000 (Valencia)

CC 2p-2h Uncertainty Parameters

Modify physical parameter P (propagate uncertainty):

$$P \longrightarrow P' = P\left(1 + x_P \frac{\delta P}{P}\right)$$

Nominal differential cross section

Event weight:

 $= \frac{d^{n} \sigma_{\nu}}{dK^{n}} / \frac{d^{n} \sigma_{\nu}'}{dK^{n}} \longrightarrow \frac{d^{n} \sigma_{\nu}'}{dK^{n}} \longrightarrow \frac{d^{n} \sigma_{\nu}'}{dK^{n}} \longrightarrow \frac{d^{n} \sigma_{\nu}}{dK^{n}} + \frac{d^{n} \sigma_{\nu}}$

Input CC 2p-2h Models:

Valencia
 SuSAv2 (Central-Value tune in DUNE)

New systematic parameters*:

- NormCCMEC
- DecayAngMEC (two tweak dials)

*Implemented in GENIEReweight

- FracPN_CCMEC
- DeltaNotDelta_CCMEC (Valencia only)

- XSecShape_CCMEC
- XSecShape_CCMEC_Empirical
- XSecShape_CCMEC_Martini
- EnergyDependence_CCMEC

Normalisation Parameter

2p-2h Uncertainties

DecayAngMEC - changes angular dependence on struck nucleon pair

Angular distribution of outgoing nucleons:

weight = $3 \cdot x_{P_1} \cdot \cos^2(\theta_{\text{DecayAngMEC}}) + 1 - x_{P_1}$

Lars Bathe-Peters

FORD

Introduction

 ν Cross Sections 2p-2h Models 2p-2h Cross Section Systematics in DUNE

Motivation and Goal

NuFact 2024

2p-2h Uncertainties

DecayAngMEC - changes angular dependence on struck nucleon pair

Angular distribution of outgoing nucleons:

weight = $3 \cdot x_{P_1} \cdot \cos^2(\theta_{\text{DecayAngMEC}}) + 1 - x_{P_1}$

Lars Bathe-Peters

LINIVERSITY OF

FORD

Introduction

 ν Cross Sections 2p-2h Cross Section Systematics in DUNE

2p-2h Models

NuFact 2024

2p-2h Uncertainties

DecayAngMEC - changes angular dependence on struck nucleon pair

2p-2h Uncertainties

DecayAngMEC - changes angular dependence on struck nucleon pair

Nucleon Pair Content

2p-2h Uncertainties

FracPN_CCMEC - changes default prediction of initial pair content of nucleons

2p-2h Model Shape Differences

Energy vs Momentum Transfer

Energy vs Momentum Transfer

Valencia **Empirical**

 XSecShape_CCMEC_Empirical parameter allows transition from (CC 2p-2h) Valencia or SuSAv2 to the Empirical model

Energy vs Momentum Transfer

Energy vs Momentum Transfer

GENIE v3.4.0, ν_{μ} on Ar, G18 10a 00 000, tweaked

> Systematic Parameters Conclusion and Outlook

Lars Bathe-Peters

Introduction

UNIVERSITY OF

 ν Cross Sections

2p-2h Cross Section Systematics in DUNE

2p-2h Models

Motivation and Goal

NuFact 2024

23

2p-2h Model Shape Differences

Energy vs Momentum Transfer

SuSAv2 **Empirical**

• XSecShape_CCMEC_Empirical parameter allows transition from (CC 2p-2h) Valencia or SuSAv2 to the Empirical model

Energy vs Momentum Transfer

Introduction Lars Bathe-Peters

UNIVERSITY OF

 ν Cross Sections 2p-2h Models 2p-2h Cross Section Systematics in DUNE

Motivation and Goal

Systematic Parameters

NuFact 2024

Conclusion and Outlook

2p-2h Model Shape Differences

Energy vs Momentum Transfer

SuSAv2 Valencia

 XSecShape_CCMEC parameter allows transition from (CC 2p-2h) SuSAv2 to the Valencia or the Empirical model

- Note:
 - Long processing time to produce the XSecShape_CCMEC reweighted distributions
 - May boil down to GENIE generation of 2p-2h events using the Valencia model

Energy vs Momentum Transfer

Lars Bathe-Peters

Introduction

Sections 2p-2n Mode

2p-2h Cross Section Systematics in DUNE

Motivation and Goal S

Systematic Parameters

NuFact 2024

Conclusion and Outlook

2p-2h Uncertainties

GENIEv3.4.0

GENIE 2p2h normalised (1.2 GeV) cross sections

EnergyDependence CCMEC - changes the energy dependence of 2p-2h cross sections

• Parametrise 2p-2h cross section by $\sigma_{\nu}(E_{\nu}) = \sigma_{\nu}^{MC}(E_{\nu}) \cdot \left(1 + \frac{1 - x_{P}}{r_{\nu}(E_{\nu})}\right)$

Lars Bathe-Peters

2p-2h Uncertainties

2p-2h Cross Section Systematics in DUNE

NuFact 2024

28

2p-2h Model Uncertainty Parameters

Summary of CC 2p-2h parameters in GENIEReweight.

Parameter	Central Value	+1 σ	-1 <i>o</i>	Comment
NormCCMEC	166%	+50%	-50%	Adopted implementation for MicroBooNE*
DecayAngMEC	Isotropic	Alternative ^a	Alternative ^a	Adopted implementation for MicroBooNE*
FracPN_CCMEC	Valencia or SuSAv2	+20%	-20%	Adopted implementation for MicroBooNE*
FracDelta_CCMEC	Valencia	+30%	-30%	Adopted implementation for MicroBooNE*
XSecShape_CCMEC	Empirical ^b or Valencia ^c	N/A	SuSAv2 d	Adopted implementation for MicroBooNE* Changed default input model from Valencia to SuSAv2
XSecShape_CCMEC_Empirical	Empirical	N/A	SuSAv2 or Valencia	Based on XSecShape_CCMEC implementation for reweighting to Empirical
XSecShape_CCMEC_Martini e	Martini	N/A	SuSAv2 or Valencia	Based on XSecShape_CCMEC implementation for reweighting to Martini
EnergyDependence_CCMEC	SuSAv2 or Valencia	+100%	N/A	Implementation inspired by T2K's approach

^a An angular distribution proportional to $\cos^2(\theta_{\text{DecayAngMEC}})$ with two tweak dials, one interpolating from an isotropic angular distribution to $\cos^2(\theta_{\text{DecayAngMEC}})$ and one to change its argument.

^b Nominal prediction of the GENIE Empirical CC 2p-2h model, here GENIE tune G18_10e_00_000.

^c Nominal prediction of the Valencia CC 2p-2h model, here GENIE tune G18_10a_00_000.

^d Nominal prediction of the SuSAv2 CC 2p-2h model, here GENIE tune G18_10s_00_000.

^eFor future nominal prediction of the Martini CC 2p-2h model.

*For central values and unce	ertainties in MicroBooNE	, see Phys. Rev. D 105 ,	072001. Table adop	ted from Table VIII in there.	GENIE-MC/Ge	nerator/config/GSystUncertainty	Table.xml
	Introduction	u Cross Sections	2p-2h Models	Motivation and Goal	Systematic Parameters	Conclusion and Outlook	20
	Lars Bathe-Peter	$r_{\rm S} = 2n_2h$ Cro	es Section Svet	ematics in DUNE -	NuEact 2024		30

Outlook

What is missing?

Nucleon decay angle:

Lars Bathe-Peters

- Implement dependence of hadron kinematics on 4-momentum transfer (Phys. Rev. C 109, 015502)
- Design weight mimicking Fourier modes for more freedom
- Reweighting between imbalanced and back-to-back nucleons (arXiv:2201.04664)
- Consider parameter to address uncertainty on removal energy
- Implement reweighing for v
 -CC2p-2h on Ar (especially XSecShape_CCMEC and EnergyDependence_CCMEC parameters)
- Energy dependence: reweight strength of structure functions:

$$\frac{\overline{L}_{\mu\nu}\overline{W}^{\mu\nu}}{E_{\nu}^{2}} = \frac{1}{E_{\nu}^{2}} \left[W_{1} \left(Q^{2} + m_{l}^{2} \right) - \frac{W_{2}}{2} \left(m_{l}^{2} + Q^{2} \right) \mp \frac{q_{0}W_{3}}{2M} \left(m_{l}^{2} + Q^{2} \right) + \frac{W_{4}}{M^{2}} \frac{Q^{2}m_{l}^{2} + m_{l}^{4}}{2} \right] + \frac{1}{E_{\nu}} \left[-2q_{0}W_{2} \pm \frac{W_{3}Q^{2}}{M} - \frac{W_{5}m_{l}^{2}}{M} \right] + W_{2}$$
Srivastava, Asit: FERMILAB-MASTERS-2023-01

WIVERSITY OF Introduction ν Cross Sections 2p-2h Models Motivation and Goal Systematic Parameters Conclusion and Outlook

NuFact 2024

2p-2h Cross Section Systematics in DUNE

31

Outlook

What is missing?

Better agreement between theoretical predictions and implementations in MC event generators

Tensions between generator predictions of hadron kinematics in 2p-2h and theory!

 ν Cross Sections

Reference: Phys. Rev. C 102, 024601

Introduction

2p-2h Cross Section Systematics in DUNE

2p-2h Models

Motivation and Goal Systematic Para natics in DUNE - NuFact 2024

Summary and Outlook

- CC 2p-2h neutrino interactions are complex and necessitate dedicated study
- Develop fit parameters to estimate systematic uncertainties

 ν Cross Sections

- Choose uncertainties such that the measurement of the oscillation parameters is not biased
- Development of novel CC 2p-2h systematic parameters in progress
- Finish and make my GENIEReweight/larsbp feature 2p2h branch publicly available
- Understanding the effect of systematic parameters on chosen variable distributions will allow a robust estimate of systematic uncertainties in modern and future neutrino oscillation experiments such as DUNE

Thank you!

2p-2h Models Motivation and Goal 2p-2h Cross Section Systematics in DUNE

Systematic Parameters NuFact 2024

33

CC MEC Interaction

Backup

UNIVERSITY OF OXFORD

Lars Bathe-Peters

Introduction

 ν Cross Sections 2p-2h Models

Motivation and Goal

Systematic Parameters

NuFact 2024

Conclusion and Outlook

2p-2h Cross Section Systematics in DUNE -

Neutrinos in the Standard Model

- Three generations (I, II, III) of fermions
- Gauge bosons mediate forces:
 - Photon electromagnetic

- Standard Model prediction:
 - 3 massless neutrinos (and 3 antineutrinos) of 3 different flavors

35

Introduction 2p-2h Models Motivation and Goal Systematic Parameters UNIVERSITY OF ν Cross Sections Conclusion and Outlook FORD 2p-2h Cross Section Systematics in DUNE Lars Bathe-Peters NuFact 2024

Neutrino-Nucleus Interactions

Theoretical Predictions by Neutrino Event Generators

Neutrino-Nucleus Interactions

anuclear Medii

UNIVERSITY OF

FORD

2p-2h Cross Section Systematics in DUNE

NuFact 2024

Nuclear Effects

Final State Interactions (FSIs)

- FSIs inside the nucleus:
 - (In)elastic Scattering
 - Pion Production
 - Absorption

Introduction

Lars Bathe-Peters

UNIVERSITY OF

XFORD

- Charge Exchange
- Hadron that escape the nucleus are measurable

 ν Cross Sections

Neutrino-Nucleus Cross Section

Interaction Modes

XFORD

Lars Bathe-Peters

2p-2h Cross Section Systematics in DUNE

NuFact 2024

Diagrams for 2p-2h Responses

Slide adapted from M. Martini and M. Ericson: Inclusion of multi-nucleon effects in RPA-based calculations for ν -nucleus scattering. Talk given at ESNT 2p-2h workshop in April 2016.

Lars Bathe-Peters

Introduction

- 2p-2h Cross Section Systematics in DUNE

 ν Cross Sections

2p-2h Models

Motivation and Goal Systematic Para natics in DUNE - NuFact 2024

Different Approaches to 2p-2h Contributions

Slide adapted from M. Martini and M. Ericson: Inclusion of multi-nucleon effects in RPA-based calculations for *v*-nucleus scattering. Talk given at ESNT 2p-2h workshop in April 2016.

2p-2h Models

Lars Bathe-Peters - 2p-2h Cross Section Systematics in DUNE

 ν Cross Sections

Introduction

ls Motivation and Goal

NuFact 2024

Theoretical Calculations on np-nh Contributions to ν -nucleus Cross Sections

M. Martini, M. Ericson, G. Chanfray, J. Marteau (Lyon, IPNL) Phys. Rev. C 80 065501 (2009) v σ total Phys. Rev. C 81 045502 (2010) v vs antiv (σ total) Phys. Rev. C 84 055502 (2011) v d² σ , d σ /dQ² Phys. Rev. D 85 093012 (2012) impact of np-nh on v energy reconstruction

Phys. Rev. D 87 013009 (2013) impact of np-nh on v energy reconstruction and v oscillation Phys. Rev. C 87 065501 (2013) antiv $d^2\sigma$, $d\sigma/dQ^2$ Phys. Rev. C 90 025501 (2014) inclusive v $d^2\sigma$ Phys. Rev. C 91 035501 (2015) combining v and antiv $d^2\sigma$, $d\sigma/dQ^2$

J. Nieves, I. Ruiz Simo, M.J. Vicente Vacas, F. Sanchez, R. Gran (Valencia, IFIC) Phys. Rev. C 83 045501 (2011) v, antiv ototal Phys. Lett. B 707 72-75 (2012) v $d^2\sigma$ Phys. Rev. D 85 113008 (2012) impact of np-nh on v energy reconstruction Phys. Lett. B 721 90-93 (2013) antiv $d^2\sigma$ Phys. Rev. D 88 113007 (2013) extension of np-nh up to 10 GeV

J.E. Amaro, M.B. Barbaro, T.W. Donnelly, I. Ruiz Simo, G. Megias et al. (Superscaling)

 ν Cross Sections

Phys. Lett. B 696 151-155 (2011) v $d^2\sigma$ Phys. Rev. D 84 033004 (2011) v $d^2\sigma$, σ total Phys. Rev. Lett. 108 152501 (2012) antiv $d^2\sigma$, σ total Phys. Rev. D 90 033012 (2014) 2p-2h phase space Phys. Rev. D 90 053010 (2014) angular distribution Phys. Rev. D 91 073004 (2015) parametrization of vector MEC

Introduction

Slide adapted from M. Martini and M. Ericson: Inclusion of multi-nucleon effects in RPA-based calculations for ν -nucleus scattering. Talk given at ESNT 2p-2h workshop in April 2016.

Lars Bathe-Peters - 2p-2h Cross Section Systematics in DUNE

2p-2h Models

ics in DUNE - NuFact 2024

Motivation and Goal

Neutrino-Nucleus Interactions

×10⁻³⁹ 16 ⊑ 14 ⊑ (a) 14 12 σ **(cm²**) 10 MiniBooNE data with shape error MiniBooNE data with total error RFG model with M_A^{eff} =1.03 GeV, κ =1.000 RFG model with M_A^{eff} =1.35 GeV, κ =1.007 2 0 0.4 0.6 0.8 1.6 1.8 $E_v^{QE,RFG}$ (GeV) Figure adapted from Phys.Rev.D81:092005,2010. cm^2 MiniBooNE OE bare ν σ/(A-Z) [10⁻³⁹ **OE RPA** 10 QE+np-nh bare QE+np-nh RPA (b) 0.2 0.40.5 0.6 0.7 0.8 0.9 0 0.10.3 E_{v} [GeV] Figure adapted from Physical Review C 81 (2010) 045502. ν Cross Sections 2p-2h Models Motivation and Goal UNIVERSITY OF Introduction

Lars Bathe-Peters

2p-2h Cross Section Systematics in DUNE

FORD

- Data excess in $\nu_{\mu}\text{-}\mathsf{CCQE}$ cross section in MiniBooNE

MiniBooN

Introduction
 Nuclear Effects
 STVs
 Simulations

- Possible explanations:
 - Increasing the axial mass M_A

Systematic Parameters

NuFact 2024

• Inclusion of *n*p-*n*h and Random-Phase Approximation (RPA) model

Conclusion and Outlook

43

Neutrino Event Generators

🛟 Fermilab

- Ambigous theoretical approach to crosssection calculation
 - Different attempts in cross section predictions
 - Various neutrino event generators to simulate neutrino-nucleus scattering

enie

- Large gap between theory and experiment ullet
 - Need data from experiment

Gibuu

The Giessen Boltzmann-Uehling-Uhlenbeck Project

NIVERSITY OF

Lars Bathe-Peters

Introduction

 ν Cross Sections 2p-2h Models 2p-2h Cross Section Systematics in DUNE

Motivation and Goal

Systematic Parameters

NEUT

Conclusion and Outlook

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

NuFact 2024

44

FIG. 2. Axes and angles which specify the final pion direction \hat{q} in the isobaric frame. \hat{k} is the direction of the momentum transfer between the leptons.

Figure taken from S. L. Adler: Photo-, Electro-, and Weak Single-Pion Production in the (3,3) Resonance Region published in 1968.

2p-2h Model Uncertainty Parameters

DecayAngMEC - changes angular dependence on struck nucleon pair

SuSAv2 (G18_10s_00_000)

2p-2h Model Uncertainty Parameters

Lars Bathe-Peters

DecayAngMEC - changes angular dependence on struck nucleon pair

Valencia (G18 10a 00 000)

weight = $3 \cdot x_{P_1} \cdot \cos^2\left(x_{P_2} \cdot \theta_{N_1}\right) + 1 - x_{P_1}$ Ad-hoc assumption on angular • distribution of outgoing nucleons) $twk_dial_i = x_{P_i}$ away from isotropic distribution to cos(DecayAngMEC), polar angle θ, v on Ar, CCMEC cos(DecayAngMEC), polar angle θ , v on Ar, CCMEC a $\cos^2(\theta_{\text{DecayAngMEC}})$ dependence GENIEv3.4.0 G18 10a 00 000 GENIEv3.4.0 G18 10a 00 000 ×10³ Events/tonne/yea :onne/yea DecayAngMEC = [1,2]20 DecayAngMEC = [1,2]DecayAngMEC = [0,2]DecayAngMEC = [1,0]DecayAngMEC = [-1,2]DecayAngMEC = [1,0.5] x_{P_1}, x_{P_2} \mathbf{q}_{3} $\mathbf{p}_{\mathbf{N}}^{'}$ DecayAngMEC DecavAngMEC = [1.0] cayAngMEC = 0 (default) 0,1 DecavAngMEC = [1,-2] DecayAngMEC = -1 -1. UNE PRELIMINAR $\underline{\mathbf{p}'}_{N_2}$ -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 $\cos(\,\theta_{\text{DecayAngMEC}}$ $\cos(\theta_{\text{DecayAngMEC}})$ ν Cross Sections 2p-2h Models **Systematic Parameters** UNIVERSITY OF Introduction Motivation and Goa Conclusion and Outlook 48

NuFact 2024

2p-2h Cross Section Systematics in DUNE

2p-2h Uncertainties

DecayAngMEC - changes angular dependence on struck nucleon pair

Delta Resonances

2p-2h Uncertainties

FracPN_CCMEC vs. *DeltaNotDelta_CCMEC* - the effect of Δ -resonances

- DeltaNotDelta_CCMEC dial: adjusts relative strength of Δ -resonance contributions to 2p-2h cross sections
- Distinguish four cases
 - !is_pn_event & !
 is_delta_event
 - !is_pn_event & is_delta_event
 - is_pn_event & !is_delta_event
 - is_pn_event & is_delta_event
- Implemented flagispnevent and flagisdeltaevent variables in NUISANCE

Conclusion and Outlook

50

GENIE CC2p-2h Valencia Model Event Generation

- Generated 9950 events using each of the G18_10*_00_000 tunes
- Compared processing time
- Generation of events using the tune G18_10a_00_000 using CC 2p-2h Valencia model to simulate CC 2p-2h neutrino interactions on argon take significantly longer compared to the other tunes G18_10s_00_000 with the CC 2p-2h SuSAv2 or G18_10e_00_000 with the CC 2p-2h Empirical model implemented

G18_10a_0	00_000	G18_10	s_00_000		G18_10e_00_000		
Current Event Number: 99 Approximate total proces Approximate processing f	950 ssing time: 3243.64 s time/event: 0.325961 s	Current Event Number: Approximate total proc Approximate processing	9950 cessing time: 47.34 s g time/event: 0.00475731	Current Ever Approximate Approximate	Current Event Number: 9950 Approximate total processing time: 38.17 s Approximate processing time/event: 0.0038358 s		
Valenc	cia	Su	SAv2		Empirical		
UNIVERSITY OF	Introduction ν Cross Lars Bathe-Peters -	s Sections 2p-2h Models 2p-2h Cross Section Syst	Motivation and Goal tematics in DUNE -	Systematic Parameters NuFact 2024	Conclusion and Outlook	52	

2p-2h Model Shape Differences

- XSecShape_CC MEC_Empirical parameter allows transition from (CC 2p-2h) Valencia or SuSAv2 to the Empirical model
- Reweighted distributions overshoot the nominal distributions

UNIVERSITY OF

OXFORD

NUME ADDRESS OF

Lars Bathe-Peters - 2p-2h Cross Section Systematics in DUNE

2p-2h Uncertainties

EnergyDependence_CCMEC - changes the energy dependence of 2p-2h cross sections

2p-2h Uncertainties

EnergyDependence_CCMEC - changes the energy dependence of 2p-2h cross sections

Tests and Validations

GENIEReweight XSecShapeCCMEC Empicial parameter

Taken from: Goals of Tuning/Systematics Working Group slides and final presentation at PittPACC Neutrino Generator Workshop from 8th-11th July 2024.

2p-2h Models

 ν Cross Sections Lars Bathe-Peters

Introduction

2p-2h Cross Section Systematics in DUNE

Motivation and Goal

NuFact 2024

Systematic Parameters Conclusion and Outlook

59

2p-2h Model Uncertainty Parameters

MicroBooNE

TABLE VIII. Summary of parameters for which MicroBooNE analyses adopt a different central value and/or uncertainty than recommended in the GENIE v3.0.6 G18_10a_02_11a model set.

	"MicroBooNE Tune"					
Parameter	Central value	$+1\sigma$	-1σ			
NormCCMEC	166%	+50%	-50%			
$XSecShape_CCMEC$	$\operatorname{Empirical}^{\operatorname{c}}$	N/A	$Valencia^d$			
DecayAngMEC	Isotropic	$\operatorname{Alternative}^{\operatorname{e}}$	N/A			
$\rm Frac PN_CCMEC$	Valencia	+20%	-20%			
$FracDelta_CCMEC$	Valencia	+30%	-30%			

^c Nominal prediction of the GENIE Empirical CC 2p2h model

^d Nominal prediction of the Valencia CC 2p2h model

^e An angular distribution proportional to $\cos^2 \theta$. See the description of this parameter in Sec. VA

Reference: Phys. Rev. D 105, 072001

 ν Cross Sections

Lars Bathe-Peters

Introduction

2p-2h Models Motivation and Goal 2p-2h Cross Section Systematics in DUNE

Systematic Parameters

NuFact 2024

Conclusion and Outlook

References and Further Reading

- |1| L. Alvarez-Ruso, M. Sajjad Athar, M. Barbaro, et al., Prog. Part. Nucl. Phys., 100, May 2018,
- O. Benhar et al., Adv. High Energy Phys., 2013, 2013. arXiv: 1310.3869 [nucl-th]. [2]
- [3] G. D. Megias et al., Springer Proc. Phys., 225, 2019. arXiv: 1901.11022 [hep-ph].
- [4]X.-G. Lu, D. Coplowe, R. Shah, G. Barr, D. Wark, and A. Weber, *Phys. Rev. D*, **92**, 5 Sep. 2015.
- X. G. Lu et al., Phys. Rev. Lett., **121**, (2), 2018. arXiv: 1805.05486 [hep-ex]. $\left[5\right]$
- L. Munteanu et al., Phys. Rev. D, 101, (9), 2020. arXiv: 1912.01511 [physics.ins-det]. [6]
- [7]S. Dolan, arXiv, 2018. arXiv: 1810.06043 [hep-ex].
- [8] J. A. Formaggio et al., Rev. Mod. Phys., 84, 2012. arXiv: 1305.7513 [hep-ex].
- X.-G. Lu, L. Pickering, S. Dolan, et al., Phys. Rev. C, 94, 1 Jul. 2016. [9]
- A. P. Furmanski et al., Phys. Rev., C95, (6), 2017. arXiv: 1609.03530 [hep-ex]. [10]
- T. Katori and M. Martini, J. Phys. G, 45, (1), 2018. arXiv: 1611.07770 [hep-ph]. [11]
- [12]B. Kayser, eConf, C040802, 2004. arXiv: hep-ph/0506165.
- [13]K. Mahn et al., Annual Review of Nuclear and Particle Science, 68, (1), 2018.
- [14]L. Alvarez-Ruso, M. S. Athar, M. Barbaro, et al., Progress in Particle and Nuclear Physics, 100, 2018,
- M. Del Tutto, Ph.D. dissertation, Oxford U., 2019. [15]

 ν Cross Sections

Introduction

- L. Bathe-Peters et al., FERMILAB-PUB-22-007-SCD, Jan. 2022. arXiv: 2201.04664 [hep-ph]. [16]
- [17]L. Bathe-Peters, M.S. thesis, Harvard University and Technische Universität Berlin, 2020.
- [18]B. Abi et al., FERMILAB-PUB-20-025-ND, Feb. 2020. arXiv: 2002.03005 [hep-ex].
- S. Dolan, U. Mosel, K. Gallmeister, L. Pickering, and S. Bolognesi, *Phys. Rev. C*, 98, 4 Oct. 2018. [19]
- [20]P. Abratenko, R. An, J. Anthony, et al., Phys. Rev. D, 105, 7 Apr. 2022.
- [21]C. Andreopoulos et al., Nucl. Instrum. Meth., A614, 2018. arXiv: 0905.2517 [hep-ph].
- T. Katori, AIP Conference Proceedings, 1663, (1), May 2015, 030001, $\left|22\right|$
- R. Gran, J. Nieves, F. Sanchez, and M. J. V. Vacas, *Phys. Rev. D*, 88, 11 Dec. 2013. [23]
- [24]J. E. Amaro et al., Journal of Physics G: Nuclear and Particle Physics, 47, (12), 2020.

Motivation and Goal

Conclusion and Outlook