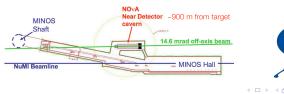
Constructing confidence intervals with Profiled Feldman-Cousins method for NOvA's neutrino oscillation measurement

Andrew Dye on behalf of the NOvA collaboration

Sep. 17, 2024



<ロト <四ト <注入 <注下 <注下 <

The NOvA Experiment

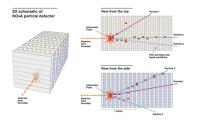
- NuMI Off-axis v_e Appearance
- Long baseline, high energy experiment
 - ${\scriptstyle \bullet}\,$ NuMI beam, ${\sim}900$ kW beam located at Fermilab
 - . Long-baseline, beam travels 810 km from Fermilab to MN
 - Off-axis, beam aimed 14.6 mrad off center to maximize the 2 GeV neutrino flux
- Primary goal is study of 3-flavor neutrino oscillations
 - $u_{\mu}/\bar{
 u}_{\mu}$ dissappearance, $u_{e}/\bar{
 u_{e}}$ appearance
- Other active research areas include
 - Cosmic neutrinos
 - Sterile neutrinos
 - Beyond-standard-model physics

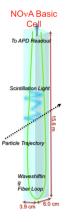
The NOvA Experiment

Overview

Sep. 17, 2024 2 / 18

The NOvA Detectors


Near Detector



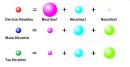
- Two detectors
 - Near detector located at Fermilab
 - Much larger Far detector located 810 km away in Minnesota
- Aside from size, both far and near detector are functionally identical

Far Detector

- · Alternating planes of PVC cells filled with liquid scintillator
- Wavelength shifting fiber carries light to APD
- Avalanche photo diode (APD) converts light to signal

Andrew Dye

The NOvA Experiment


Overview

:▶ ব ≣ ▶ ≣ ∽ ৭.ে Sep. 17, 2024 3 / 18

A D N A B N A B N A B N

3-Flavor Oscillations

• Neutrino flavor states are composed of the mass eigenstates

- Related by the PMNS matrix, which relies on 4 mixing parameters
 - Three mixing angles, $\theta_{12}, \ \theta_{23}, \ \theta_{13}$
 - One CP violating phase, δ_{CP}

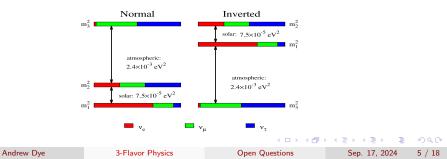
• Typically represented as product of 3 rotation matrices

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \hline \\ c_{12} & c_{12} & 0 \\ 0 & 0 & 1 \\ \hline \\ c_{12} & c_{12} & 0 \\ 0 & 0 & 1 \\ \hline \\ c_{12} & c_{12} & 0 \\ 0 & 0 & 1 \\ \hline \\ c_{13} & c_{13} & c_{13} \\ \hline \\ c_{12} & c_{12} & 0 \\ 0 & 0 & 1 \\ \hline \\ c_{12} & c_{12} & 0 \\ \hline \\ c_{13} & c_{13} & c_{13} \\ \hline \\ c_{12} & c_{12} & 0 \\ \hline \\ c_{13} & c_{13} & c_{13} \\ \hline \\ c_{12} & c_{12} & 0 \\ \hline \\ c_{13} & c_{13} & c_{13} \\ \hline \\ c_{12} & c_{12} & c_{12} \\ \hline \\ c_{12} & c_{12} & c_{13} \\ \hline \\ c_{13} & c_{13} & c_{13} \\ \hline \\ c_{12} & c_{12} & c_{12} \\ \hline \\ c_{12} & c_{12} & c_{12} \\ \hline \\ c_{13} & c_{13} \\ \hline \\ c_{13} & c_{13} \\ \hline \\ c_{12} & c_{12} \\ c_{13} & c_{13} \\ \hline \\ c_{13} & c_{13} \\ c_{13} & c_{13} \\ \hline \\ c_{13} & c_{13} \\ c_{13} & c_{1$$

 $(c_{ij} := \cos \theta_{ij}, s_{ij} := \sin \theta_{ij})$

Andrew Dye	3-Flavor Physics	Mixing Parameters	
------------	------------------	-------------------	--

A D N A B N A B N A B N


Open Questions

$\sin^2 \theta_{23}$ results from various experiments, from PDGLive

$\sin^2(\theta_{22})$				1000.50e7033 Report Q
The reported presented by	limits below correspond to the project the authors. Unless otherwise specifies	on cello I L file line	he sin ¹ (A, is are RO) cais of the 90% CL contains in the $\sin^2(\theta_{20}) - \Delta m^2_{10}$ plane (CL and the reported ansarbieties are 60% CL
If on orperin	set reports $\sin^2(2.8_{\pm 0})$ we convert the	elve to	$i\pi^2(\delta_{20})$.	
water .	ACCIMINAL D		aiov	CDMMIN7
1.565.1002	OURPE three includes some finites of 1.2.	Austin) here of a	na sniaring
1.500 1001	OUR FE Assuming normal mass ordering			
28.42 (2.4	14844	3023	CC8	Normal measurelating
8.961 (202)	² AR	2027	126	Normal mass ordering
8.968 THE	*AK	2027	126	Inverted most and ring
8.37 1.008	* ACRO	2002	NON	Normal mass ordering: actant I for #20
136-10.04	³ AGR0	3002	NON	towted man unlaring output I for #20
44.122	4 ADMARCH	30064	AINS	Namul measurating
48:22	*ADANSON	30254	MNS	Inverted more andering
8,596 (ME)	FAIL	2018	SEAM	Normal mass ordering, Mus constrained
8.3'T2 - 10000	* A80			levented more archiving, the constrained

- Three primary questions:
 - Measurement: What are the values of the mixing parameters?
 - CP Violation: Do neutrinos and anti-neutrinos oscillate differently? If so, by how much? $(\delta_{C\!P})$
 - ullet Mass ordering: What is the sign of $m_3^2-m_2^2:=\Delta m_{32}^2$

Data Visualisation

Andre

- NOvA primarily measures three of the oscillation parameters:
 - $\sin^2 \theta_{23}, \Delta m_{32}^2, \delta_{CP}$
- Observed data is compared to predictions generated using various combinations of the parameters (hypotheses).
 - Likelihood of observing our data given a chosen set of parameters as the true values.
- **Confidence Intervals** are regions of our parameter space that contain the true values of the parameters with a chosen level of confidence.

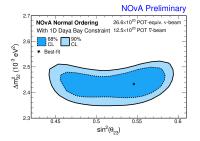


Fig: Surface plot showing the 90% and 68% confidence regions for the $\sin^2 \theta_{23}$ and Δm_{32}^2 oscillation parameters

rew Dye	Statistics	Confidence Intervals	Sep. 17, 2024	6 / 18

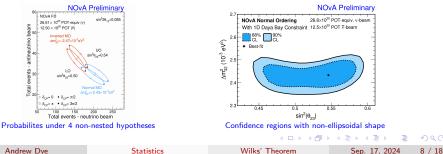
イロト イポト イヨト イヨト 三日

Confidence Interval Construction

Confidence Intervals are regions of our parameter space that contain the true values of the parameters with a chosen level of confidence.

• Requires knowledge about the test statistic

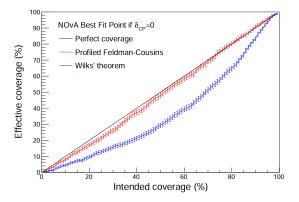
A


- Log-Likelihood ratio(LLR): test statistic which describes the likelihood of observing the data
- Wilks' Theorem: distribution of the Log-Likelihood Ratios converges to a χ^2 distribution, given certain conditions are met
- $\bullet \ \chi^2$ distribution well documented, can look up critical values for given levels of confidence
 - If a given set of parameters LLR is less than or equal to the critical χ^2 value, it is within that confidence interval

	$(1 - \alpha)$ (%)	m = 1	m=2	m = 3	
	68.27	1.00	2.30	3.53	The number
The level of the Cl	90.	2.71	4.61	6.25	
	95.	3.84	5.99	7.82	of dimensions.
you want to draw.	95.45	4.00	6.18	8.03	
	99.	6.63	9.21	11.34	
	99.73	9.00	11.83	14.16	
=		•			

Andrew Dye	Statistics	Confidence Intervals	Sep. 17, 2024	7 / 18

Wilks' Theorem Conditions


- \sim Large sample size
 - . Neutrino events notoriously rare, less of a problem with enough data
- \sim Nested hypotheses: Null hypothesis is a special case of the alternative (i.e. fixed parameters)
 - ✓ Measuring parameters under normal or inverted mass ordering
 - × Determining mass ordering; normal ordering is not a subset of inverted ordering
- × Ellipsoidal distributions of the uncertainty in the parameters
 - Two primary modes of failure
 - Uncertainties crossing physical boundaries
 - Degeneracies in the model
- \bullet Using the critical χ^2 values for the desired confidence level will result in incorrect intervals

Feldman and Cousins

Solution: Feldman-Cousins Technique

- A method for empirically generating log-likelihood distributions
- Confidence interval construction using this generated distribution more accurate

Sep. 17, 2024 9 / 18

Traditional Feldman and Cousins

Developed by Garv Feldman and Robert Cousins^a

- Generate **pseudoexperiments** at each grid point in the parameter space
 - Pseudoexperiments(PSEs): Mock data generated using model predictions via monte carlo methods
- Determine the log-likelihood for each PSE, resulting in a log-likelihood distribution for each grid point
- New critical χ^2 value for that grid point obtained at the point in the distribution that corresponds to the desired confidence level

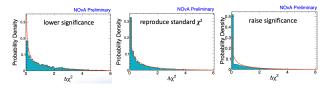


Fig: Examples of how different grid points in the parameter space can vary from the traditional χ^2 distribution

^aFeldman and Cousins. "Unified approach to the classical statistical analysis of small signals".

		<□ > <∂	▶ ★ 클 ▶ ★ 클 ▶ · · 클	ર જેટલ
Andrew Dye	Feldman and Cousins	Traditional FC	Sep. 17, 2024	10 / 18

Profiled Feldman-Cousins

Traditional Feldman-Cousins has no way to handle **nuisance parameters** and becomes less effective with parameter spaces that contain large amounts of systematic parameters

• Profiled Feldman and Cousins^a

- Used by the NOvA collaboration to handle nuisance parameters
- . Nuisance parameters: any parameter that is not a parameter of interest
 - $\bullet\,$ Systematic uncertainties, NOvA has ${\sim}70$
 - · Oscillation parameters not actively being plotted
- Solution: profile over nuisance parameters
 - Profiling: Fix nuisance parameters to observed best fit values during pseudoexperiment generation
 - · Profiled values differ for each combination of the parameters of interest

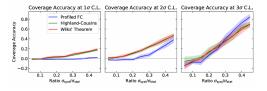
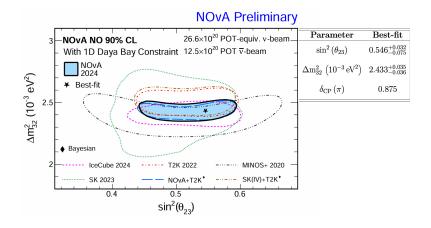


Fig: Coverage accuracy as the amount of systematic uncertainty grows (toy model simulation)

^aAcero et al., "The Profiled Feldman-Cousins technique for confidence interval construction in the presence of nuisance parameters".

And	lrew	Dve

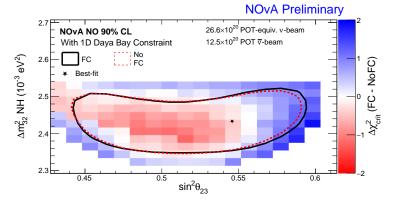

Feldman and Cousins

Profiled FC

Sep. 17, 2024 11 / 18

3Flavor Analysis 2024

• NOvA recently presented results representing a total of over 10 years of data, and almost double (96%) the ν_{μ} beam exposure since last analysis



Analysis Sep. 17, 2024

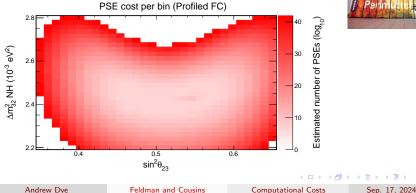
12 / 18

3Flavor Analysis 2024

- Frequentist plots must be FC corrected in order to accurately report findings
- FC Corrections alter the confidence regions

Comparison between non-corrected and corrected confidence regions, blue areas mark where the critical χ^2 value grows, and can include otherwise excluded bins into the confidence region, where the red areas are the opposite, marking a decrease in the critical χ^2 and potentially excluding bins from the region

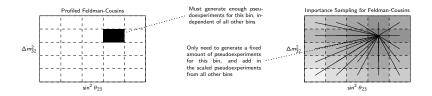
Andrew Dye


FC for NOvA 3-Flavor Analysis

Sep. 17, 2024 13 / 18

Computational Cost

- FC Corrections require generating and fitting pseudoexperiments(PSEs) for each bin
- Number of PSEs required depends upon desired precision and initial likelihood of the bin
- Required use of parrallelization (via the DIY C++ package)
- Ran at National Energy Research Scientific Computing center (NERSC)
 - $\bullet\,$ Ran on extremely powerful supercomputer, Perlmutter, utilizing up to 13,056 CPU cores at a time
 - · Even still, cost to correct full plot was unaffordable



14 / 18

Potential Cost Improvement - Importance Sampling

- Method to reduce computational cost during Feldman-Cousins^a
- Implements a weighting to be applied to pseudoexperiments at other grid points, to be used in the current grid point
- Would reduce computational cost, especially at high significance levels

^aBerns, "Importance sampling method for Feldman-Cousins confidence intervals".

Andrew Dye	

 ▲ ■ → ▲ ■ → ■

 Sep. 17, 2024

15 / 18

Conclusion

- NOvA continues to measure the values of the neutrino 3-flavor mixing parameters, as well as shedding light into the the neutrino mass ordering problem
- Neutrino experiments pose a unique statistical probelm due to the nature of it's parameter space and the difficulty inherent in the detection of neutrinos
- One of the solutions to this statistical problem is the Profiled Feldman-Cousins technique, and allows for more accurate confidence intervals
- This method is computationally expensive, and we continue to explore optimisation techniques, such as the Importance Sampling method

イロト イボト イヨト イヨト

References

- Acero, M. A. et al. "The Profiled Feldman-Cousins technique for confidence interval construction in the presence of nuisance parameters". In: (2022). arXiv: 2207.14353 [hep-ex]. URL: https://arxiv.org/abs/2207.14353.
- Berns, Lukas. "Importance sampling method for Feldman-Cousins confidence intervals". In: *Physical Review D* 109.9 (May 2024). ISSN: 2470-0029. DOI: 10.1103/ physrevd.109.092002. URL: http://dx.doi.org/10.1103/PhysRevD.109. 092002.
- Feldman, Gary J. and Robert D. Cousins. "Unified approach to the classical statistical analysis of small signals". In: *Physical Review D* 57.7 (Apr. 1998), 3873–3889. ISSN: 1089-4918. DOI: 10.1103/physrevd.57.3873. URL: http://dx.doi.org/10. 1103/PhysRevD.57.3873.

And	Irew	Dv	е

A D F A B F A B F A B

Thank you!

Questions?

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

And	Irew	Dve

Questions?

э Sep. 17, 2024 18 / 18

H 5