17/09/24

Modeling neutrino-nucleus interaction uncertainties for DUNE

The baseline model and uncertainties for DUNE's next round of long-baseline oscillation sensitivity studies

Stephen Dolan for the DUNE collaboration

stephen.joseph.dolan@cern.ch

Stephen Dolan

The DUNE Experiment

Stephen Dolan

The DUNE Experiment

What we're facing

• Neutrino interaction cross sections are hard to model. Our current generator predictions are all ruled out by existing measurements.

What we're facing

• Neutrino interaction cross sections are hard to model. Our current generator predictions are all ruled out by existing measurements.

• Our baseline model will be demonstrably "wrong"

What we're facing

• Neutrino interaction cross sections are hard to model. Our current generator predictions are all ruled out by existing measurements.

• Our baseline model will be demonstrably "wrong"

Overview

- Our updated interaction model
- Limitations of the model
- Available and planned systematic parameters

Updated interaction model

DUNE has moved to a shared interaction model with a focus on **flexibility for reweighting**. This introduces several changes:

- Updated nuclear ground state model
- Z-expansion for CCQE axial form factor
- SuSAv2 2p2h
- Simulation of de-excitation photons for Argon

It also uses GENIE's free nucleon tune Phys. Rev. D 104, 072009

Available in GENIE v3.04.00 onwards as: Ar23_20i_00_000

Also used by SBN, under consideration by NOvA

Stephen Dolan

- Under certain approximations, initial state nucleons are described by their:
 - Fermi motion: p_{miss} (their initial state momentum)
 - **Removal energy**: E_{miss} (the energy required to get them out of the nucleus)
- Different models give us different 2D distributions. For example:
 - RFG: 1D parabola
 - LFG: smears this out
 - SF: nuclear shell structure

Eur.Phys.J.ST 230 (2021) 24, 4469-4481

Stephen Dolan

- Under certain approximations, initial state nucleons are described by their:
 - Fermi motion: p_{miss} (their initial state momentum)
 - **Removal energy**: E_{miss} (the energy required to get them out of the nucleus)
- Different models give us different 2D distributions. For example:
 - RFG: 1D parabola
 - LFG: smears this out
 - SF: nuclear shell structure
- Provided the models cover a reasonable amount of this 2D phase space it's fairly easy to implement a range of physicsmotivated distortions

E.g.: <u>The T2K uncertainty model</u> for SF contains 5 d.o.f. to shape this 2D space

Phys. Rev. D 109, 072006

Eur.Phys.J.ST 230 (2021) 24, 4469-4481

Stephen Dolan

 GENIEv3 out-the-box assumed a constant removal energy

- GENIEv3 out-the-box assumed a constant removal energy
- Solution: make E_{miss} dependent on p_{miss} according to Fermi-gas model expectation

- GENIEv3 out-the-box assumed a constant removal energy
- Solution: make E_{miss} dependent on p_{miss} according to Fermi-gas model expectation
- And while we're at it: add an "SRC" tail

Stephen Dolan

- GENIEv3 out-the-box assumed a constant removal energy
- Solution: make E_{miss} dependent on p_{miss} according to Fermi-gas model expectation
- And while we're at it: add an "SRC" tail
- Finally, we shift the spectrum to align with e,e'p informed SF models

Stephen Dolan

Z-expansion for CCQE FF

- Moving from a dipole to Z-expansion axial form factor
- Z-expansion offers four free parameters to alter the form factor shape
 - Much more flexibility to describe high and low Q^2 regions
- Default implementation tuned to bubble chamber data

Stephen Dolan

Z-expansion for CCQE FF

- Moving from a dipole to Z-expansion axial form factor
- Z-expansion offers four free parameters to alter the form factor shape
 - Much more flexibility to describe high and low Q^2 regions
- Default implementation tuned to bubble chamber data
- But LQCD calculations provide an interesting alternative we should make sure to cover

 Q^2 = four momentum transfer

Z-expansion for CCQE FF

- Moving from a dipole to Z-expansion axial form factor
- Z-expansion offers four free parameters to alter the form factor shape
 - Much more flexibility to describe high and low Q^2 regions
- Default implementation tuned to bubble chamber data
- But LQCD calculations provide an interesting alternative we should make sure to cover
 Annual Review of Nuclear and Particle
 - Impact on observables can be quite large!

Stephen Dolan

SuSAv2 2p2h

- Moving from Nieves 2p2h to SuSAv2 2p2h
- Motivation: can reweight Nieves to SuSA but not vice-versa (missing phase space)
- Models are based on similar theory foundations, but make different choices
 - "Direct-exchange interference terms"
 - Imaginary part of the delta propagator
 - (Non)relativistic approximations

SuSAv2 2p2h

- Moving from Nieves 2p2h to SuSAv2 2p2h
- Motivation: can reweight Nieves to SuSA but not vice-versa (missing phase space)
- Models are based on similar theory foundations, but make different choices
 - "Direct-exchange interference terms"
 - Imaginary part of the delta propagator •
 - (Non)relativistic approximations •
- Different shapes in q_0, q_3 and different nucleon pair contributions

2000

1800

1600

1200

1000 800

600

400

200

2000

0

(MeV)

ം 1400

 q_0 = energy transfer q_3 = momentum transfer ×10⁻⁴² Phys. Rev. D **101**, 0330<mark>03</mark> 3.5 SuSAv2 2p2h 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 1600 1800 2000 600 800 1200 1400 q (MeV/c)

×10⁻⁴²

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Overview

- Our updated interaction model
- Limitations of the model
- Available and planned systematic parameters

A generator's view of νN scattering (true for at least some generators some of the time)

- Take theory inputs where possible, but these are often limited
 - Only capable of predicting a subset of observables
 - Only valid within some range of kinematic phase space
 - Only valid for certain processes

A generator's view of νN scattering (true for at least some generators some of the time)

- Take theory inputs where possible, but these are often limited
 - Only capable of predicting a subset of observables
 - Only valid within some range of kinematic phase space
 - Only valid for certain processes
- Stitch them together

• Fill in the gaps with fudges, guesses and approximations

Example: 2p2h

• Theory give us:

 $\frac{d^2\sigma}{dq_0dq_3}$

• GENIE predicts:

 $\frac{d^8\sigma}{dq_0dq_3d\boldsymbol{p}_1d\boldsymbol{p}_2}$

Howis

Example: 2p2h

• Theory give us:

 $\frac{d^2\sigma}{dq_0dq_3}$

• GENIE predicts:

 $\frac{d^8\sigma}{dq_0dq_3d\boldsymbol{p}_1d\boldsymbol{p}_2}$

- Sample struck nucleons 4-momenta independently from a Fermi gas model and combine into a 2-nucleon "cluster"
 - Assumption: no correlations between momentum and energy of struck nucleons
- Give 4-momentum transfer (q_0, q_3) to the cluster
- "Decay" the cluster to two nucleons
 - Assumption: 4-momentum transfer is shared evenly between the two nucleons

Example: 2p2h

Recent theory calculation of semi-exclusive cross section

- Sample struck nucleons 4-momenta independently from a Fermi gas model and combine into a 2-nucleon "cluster"
 - Assumption: no correlations between momentum and energy of struck nucleons
- Give 4-momentum transfer (q_0, q_3) to the cluster
- "Decay" the cluster to two nucleons
 - Assumption: 4-momentum transfer is shared evenly between the two nucleons

Example: FSI

- Our input theory cross section calculations assume no FSI
- We add it in via a semiclassical intranuclear cascade model
- Important impact on neutrino energy reconstruction

Stephen Dolan

Example: FSI

- Our input theory cross section calculations assume no FSI
- We add it in via a semiclassical intranuclear cascade model

- Important impact on neutrino energy reconstruction
 - Which is pretty different between models ...

Overview

- Our updated interaction model
- Limitations of the model
- Available and planned systematic parameters

A first uncertainty parameterisation is in development

These will be implemented in <u>NuSystematics</u>: easy for DUNE and other experiments to use!

Ground state

Removal energy shape SRC "tail" strength Shell-like shape q3 dependent shift

CCQE

Z-expansion parameters RPA Optical potential Pauli blocking

<u>2p2h</u>

Normalisation SuSAv2 to Valencia Pair content Energy dependence Delta vs not delta Nucleon ejection model

Resonant pion production

MA, Mv, Norm Pauli blocking RPA / Optical potential effects? W shape $\pi^{+/-}$ vs π^0 fraction tweaks Resonance decay kinematics Resonance broadening FSI

. . .

. . .

SIS/DIS

Transition region strength AGKY dials Bodek-Yang parameters Non-RES low W contrib. Multiplicity modifications Alternative model (AMU)

hA pion fate dials hA nucleon fate dials π abs. pair fractions hA to hN, INCL, G4BC

Misc

NC norms Coh shape+norm nue/numu ratio nue/nuebar ratio Ad-hoc neutron ejection

Stephen Dolan

Some of these have been available in GENIE ReWeight for a while or are very simple to add

Ground state

Removal energy shape SRC "tail" strength Shell-like shape q3 dependent shift

CCQE

Z-expansion parameters **RPA** Optical potential Pauli blocking

<u>2p2h</u>

Normalisation SuSAv2 to Valencia Pair content Energy dependence Delta vs not delta Nucleon ejection model

Resonant pion production

Transition region strength

Bodek-Yang parameters

Multiplicity modifications

Alternative model (AMU)

Non-RES low W contrib.

MA, Mv, Norm Pauli blocking **RPA / Optical potential effects?** W shape $\pi^{+/-}$ vs π^0 fraction tweaks Resonance decay kinematics Resonance broadening

FSI

hA pion fate dials hA nucleon fate dials π abs. pair fractions hA to hN, INCL, G4BC

Misc

NC norms Coh shape+norm nue/numu ratio nue/nuebar ratio Ad-hoc neutron ejection

Stephen Dolan

NuFact 2024, Argonne, 17/09/24

SIS/DIS

. . .

AGKY dials

Many come from work inspired by MicroBooNE

See talk by Lars Bathe-Peters for many details on the 2p2h uncertainties

Ground state

Removal energy shape SRC "tail" strength Shell-like shape q3 dependent shift

CCQE

Z-expansion parameters RPA

Optical potential Pauli blocking

<u>2p2h</u>

Normalisation SuSAv2 to Valencia Pair content Energy dependence Delta vs not delta Nucleon ejection model

Resonant pion production

MA, Mv, Norm Pauli blocking RPA / Optical potential effects? W shape $\pi^{+/-}$ vs π^0 fraction tweaks Resonance decay kinematics Resonance broadening

. . .

. . .

SIS/DIS

Transition region strength AGKY dials **Bodek-Yang parameters** Non-RES low W contrib. Multiplicity modifications Alternative model (AMU)

FSI

hA pion fate dials hA nucleon fate dials π abs. pair fractions hA to hN, INCL, G4BC

Misc

NC norms Coh shape+norm nue/numu ratio nue/nuebar ratio Ad-hoc neutron ejection

Stephen Dolan

Others are under development by DUNE, in the next slides I give examples of two new sets of parameters

SIS/DIS

. . .

AGKY dials

Ground state

Removal energy shape SRC "tail" strength Shell-like shape q3 dependent shift

CCQE

Z-expansion parameters **RPA**

Optical potential

Pauli blocking

<u>2p2h</u>

Normalisation SuSAv2 to Valencia Pair content Energy dependence Delta vs not delta Nucleon ejection model

Resonant pion production

Transition region strength

Bodek-Yang parameters

Multiplicity modifications

Alternative model (AMU)

Non-RES low W contrib.

MA, Mv, Norm Pauli blocking RPA / Optical potential effects? W shape $\pi^{+/-}$ vs π^0 fraction tweaks Resonance decay kinematics Resonance broadening

FSI

hA pion fate dials hA nucleon fate dials π abs. pair fractions hA to hN, INCL, G4BC

Misc

NC norms Coh shape+norm nue/numu ratio nue/nuebar ratio Ad-hoc neutron ejection

Stephen Dolan

Example: ground state modifications

• Recent DUNE work has established dials to modify the nuclear ground state: alters outgoing lepton and hadron kinematics a consistent way

Example: FSI hadron kinematics

- Another set of dials aims to cover variations in hadron kinematics within different FSI models
- Reweight such that the visible energy loss via the FSI cascade is correctly transformed between models and the inclusive cross-section is unchanged
- A first handle on key differences between FSI models

$$E_{bias} = (KE_p^{preFSI} - E_{had}^{postFSI})/KE_p^{preFSI}$$
$$E_{had}^{postFSI} = \Sigma T_p + \Sigma T_{\pi^{\pm}} + \Sigma E_{\gamma} + \Sigma E_{\pi^0}$$

Help!: SIS and hadronization

- Modelling low Q^2 "SIS" is **tough**
 - Poor agreement with measurements
 - Incomplete uncertainty model
 - ~30% of interactions at DUNE
- Modelling hadron kinematics from such interactions is **tougher**
 - Way past PYTHIA's range of validity
 - Also: incomplete uncertainty model
- Expect very limited data on Argon at DUNE energies before DUNE starts

Help!: SIS and hadronization

- Modelling low Q^2 "SIS" is **tough**
 - Poor agreement with measurements
 - Incomplete uncertainty model
 - ~30% of interactions at DUNE
- Modelling hadron kinematics from such interactions is **tougher**
 - Way past PYTHIA's range of validity
 - Also: incomplete uncertainty model
- Expect very limited data on Argon at DUNE energies before DUNE starts
- Help!
 - Make the most of that data we have or will have
 - More theory guidance
 - Community focus on development of realistic model uncertainties

Stephen Dolan

Summary

- DUNE has completed **a new baseline model**, which consists of a few extensions to GENIE baseline configurations:
 - Expansion of phase space for nuclear ground state
 - o Z-expansion treatment of axial form factor
 - o SuSAv2 2p2h
 - Dexcitation photons from Argon
- Like all models, it **has plenty of failings** and cannot describe global cross-section measurements
 - E.g.: lack of predictive power for outgoing hadron kinematics
- But it prioritises flexibility to allow us to add uncertainties to cover "known unknowns" within it
- Thanks to work within GENIE and MicroBooNE, we have a great set of uncertainty parameters as a starting point, but we still have plenty of work to do
- Open for joint development of a comprehensive uncertainty model
 alongside SBN and NOvA

Backups

Stephen Dolan

Advanced FSI cascades

More advanced treatment of FSIs is available via e.g. the INCL model (Phys. Rev. C 87 014606)

Plots from Ershova et al., *Study of FSI of protons ith INCL and NuWro cascade models* Phys. Rev. D **106**, 032009

Stephen Dolan

Advanced FSI cascades

• More advanced treatment of FSIs is available via e.g. the INCL model (Phys. Rev. C **87** 014606)

Plots from Ershova et al., *Study of FSI of protons ith INCL and NuWro cascade models* Phys. Rev. D **106**, 032009

- INCL's treatment of nucleon absorption and nuclear cluster production gives a different distribution of energy among outgoing hadrons
- Might expect a significant impact on neutrino energy smearing

Stephen Dolan