Physics opportunities with kaon decay-at-rest neutrinos: search for sterile neutrino and non-standard interactions

Aman Gupta

Saha Institute of Nuclear Physics, Kolkata, India

in collaboration with **Supriya Pan, Sushant Raut, Poonam Mehta & Atika Fatima**

Lemont, Illinois, United States **NuFact 2024 1** September 16th - 21st, 2024

September 17, 2024

Introduction: neutrino oscillation and new physics

- \triangleright Neutrino flavour oscillation arises from mixing between flavour states (v_e , v_μ , v_τ) and mass eigenstates (v_1 , v_2 , v_3) of neutrinos.
- The 3-flavour oscillation probability depends upon 3 mixing angles $(\theta_{12}, \theta_{13}, \theta_{23})$, 2 independent mass squared differences $(\Delta m^2_{21}, \Delta m^2_{31})$ and 1 CP violating phase δ_{CP} .
- ➢ In three flavour standard neutrino oscillation picture the **important unknown** parameters are
	- 1. Sign of Δm_{31}^2 (Neutrino mass ordering)
	- 2. *δCP* (CP violating phase)
	- 3. Octant of θ_{23} ($\theta_{23} > 45^{\circ}$ or $\theta_{23} < 45^{\circ}$)
- ➢ **While the standard three flavour oscillation framework is firmly established by current data;** subdominant effects can not be ruled out completely
- \triangleright Current and future neutrino oscillation experiments are aimed to measure these parameters. But...
- ➢ There are several *"New Physics***"** scenarios which can significantly impact the determination of these unknowns <http://dx.doi.org/10.21468/SciPostPhysProc.2.001>
- ► New Physics:
	- **1. Sterile neutrinos**
	- *2.* **Non-standard interactions (NSIs)**
	- **3.** Neutrino decoherence and decay
	- 4. Unitarity violation
	- *5.* LIV/CPT, etc...

Neutrino flavour transition provides unique opportunity to search for physics beyond the Standard Model in oscillation experiments

Neutrinos from kaon-decay-at-rest (KDAR)

- ➢ **Two-body decay of charged kaons at rest produce mono-energetic beam of muon neutrinos at** ∼**236 MeV**
- ➢ **Because of their KNOWN energy KDAR neutrinos are ideal for a cross section measurement**
- ➢ **MiniBOONE (PRL 120, 141802), and experiments (arXiv:1705.08629) have observed KDAR neutrinos so far**
- \triangleright We use expected data from JSNS² (0.7-0.8 MW beam)
- ≥ 730 muon events including 692 signal + 38 background

JSNS² as source for KDAR neutrino signal

- \triangleright The J-PARC Sterile Neutrino Search at the J-PARC Spallation Neutron Source (JSNS²) experiment will produce such types of neutrinos with decay-at-rest processes of pions, muons, and kaons.
- \triangleright Primary aim of the experiment: Probe **sterile neutrinos with Δm² ∼ 1 eV² from** $ν_{μ}$ **→** $ν_{e}$ oscillations at a short baseline (24 meters)
- ➢ **17 t Gd-loaded liquid scintillator detector**
- ➢ Coincident signal between initial neutrino interaction and subsequent decay provides **excellent background rejection**

Neutrino-matter interactions: Standard (SI) and non standard (NSI)

➢ In the SM there are two ways of interacting neutrinos with matter; Charged Current and Neutral Current

 Flavour-independent () only ➢ The Charged Current Lagrangian is given by **Flavour-dependent** = ±√2 **Affect neutrino oscillation significantly Similar term for but due to flavour universal it does not affect neutrino oscillation**

Neutrino-matter interactions: Standard (SI) and non standard (NSI)

 \triangleright Non-Standard neutrino interactions are the new interactions and couplings between neutrinos and matter fermions beyond those in the SM. It could be responsible for sub-leading effects in neutrino oscillation.

➢ NSIs which affect neutrino **production or detection** involve **Charged Current** processes

$$
\mathcal{L}_{NSI}^{CC} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \epsilon_{\alpha\beta}^{f,P} (\bar{\nu_{\alpha}}\gamma^{\mu}P_L l_{\beta})(\bar{f}\gamma_{\mu}Pf'),
$$

over long-baselines aka **"Propagation NSI"** $\propto E_{\nu}$, ρ

 \triangleright NSI Lagrangian:

For most experiments, neutrinos are produced from pion decay and detected through their interactions with nucleons, i.e. they are sensitive to the source/detector NSI parameters $\epsilon^{ud}_{\alpha\beta}$

In this work we use neutrinos from kaon decay to probe a different family of NSI parameters: $\epsilon_{\alpha\beta}^{us}$

Neutrino oscillations with source NSI

- \triangleright In the SM, interactions of charged leptons with neutrinos are flavour-diagonal, i.e. $|v_\alpha^s\rangle = |v_\alpha\rangle$.
- \triangleright However, the inclusion of CC-NSI can alter this and the neutrino produced in association with the charged lepton l_α can also have an admixture of other flavour ν_β , i.e. $|\bm{v}^{\mathcal{S}}_{\alpha}\rangle = \sum_{\pmb{\beta}} \Big(\bm{\delta_{\alpha\beta}}+\bm{\epsilon}^{\bm{f}\bm{f}'}_{\bm{\alpha}\bm{\beta}}$ $|v_{\beta}\rangle$
- \triangleright Source NSIs induce non-unitarity: Non-trivial normalization of the states
- \triangleright For KDAR neutrinos $|v_{\mu}^{s}\rangle$ will be modified as

 \triangleright The source NSI parameters relevant for this work

$$
\langle \mathbf{I} | \mathbf{I} + \mathbf{E}^{ff'} \rangle_{\mu\alpha} | \mathbf{v}_{\alpha} \rangle = (\mathbf{I} + \mathbf{E}^{ff'})_{\mu\alpha} U_{\alpha i} | \mathbf{v}_{i} \rangle
$$

$$
\mathbf{\varepsilon}_{\alpha\beta}^{us} = \begin{bmatrix} \varepsilon_{ee}^{s} & \varepsilon_{e\mu}^{s} & \varepsilon_{e\tau}^{s} \\ \varepsilon_{\mu e}^{s} & \varepsilon_{\mu\mu}^{s} & \varepsilon_{\mu\tau}^{s} \\ \varepsilon_{\tau e}^{s} & \varepsilon_{\tau\mu}^{s} & \varepsilon_{\tau\tau}^{s} \end{bmatrix}
$$

➢ **For very short baselines (L/E << 1)**, only (standard) survival amplitudes contribute, giving rise to **'zero-distance flavour conversion'**

Oscillation Probabilities

$$
P_{\mu\alpha} = |\Sigma_{\beta}(\mathbb{I} + \varepsilon^{us})_{\mu\beta} A_{\beta\alpha}^{SM}|^2 \text{ (up to a normalization factor)}
$$

$$
P_{\mu e} = |\varepsilon_{\mu e}^{us}|^2 / (|\varepsilon_{\mu e}^{us}|^2 + |1 + \varepsilon_{\mu\mu}^{us}|^2)
$$

$$
P_{\mu\mu} = |1 + \varepsilon_{\mu\mu}^{us}|^2 / (|\varepsilon_{\mu e}^{us}|^2 + |1 + \varepsilon_{\mu\mu}^{us}|^2)
$$

Results: oscillation probability and event spectrum

- \triangleright We use GLoBES to compute the event spectrum and sensitivity of JSNS² by implementing our own NSI probability engine.
- ➢ Only one NSI parameter is considered at a time.

 \triangleright The effect of only $\epsilon_{\mu\mu}^{us}$ is wiped out due to the probability normalization by v_μ disappearance events

Results: source NSI constraint from KDAR

 \triangleright We present the result for both **Current data (calibrated to 730** v_μ **events)** and **future data (calibrated to 40,000** v_μ **events)**

The bounds by JSNS² on NSI parameter $\left|\epsilon_{\mu e}^{us}\right|< 0.03$ (0.005) at 99% C.L. with current (future) statistics

Search for Sterile neutrinos from KDAR

- \triangleright Over the past few decades, several anomalous results have been observed in experiments involving the production and detection of neutrinos over short baselines (less than 1 km). **To explain these anomalies, sterile neutrino oscillations with a mass of around 1 eV have been proposed as a key solution.**
- ➢ The short-baseline oscillation behaviour of KDAR neutrinos will be altered in the presence of eV-scale sterile neutrino: new mixing angles, phases, mass-squared difference

In "3+1 model"

$$
\begin{pmatrix}\n\nu_e \\
\nu_\mu \\
\nu_\tau\n\end{pmatrix} = \begin{pmatrix}\nU_{e1} & U_{e2} & U_{e3} & \nU_{e4} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & \nU_{\mu 4} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & \nU_{\tau 4} \\
U_{s1} & U_{s2} & U_{s3} & \nU_{s4}\n\end{pmatrix}\n\begin{pmatrix}\n\nu_1 \\
\nu_2 \\
\nu_3 \\
\nu_4\n\end{pmatrix}
$$

In the short-baseline limit $\left(\frac{\Delta m^2_{21}L}{E}\right)$ $\frac{v_{21}^2 L}{E} \ll 1, \frac{\Delta m_{31}^2 L}{E}$ $\frac{\mu_{31}L}{E}\ll 1$), where standard oscillations are suppressed, the $\nu_{\mu}\rightarrow \nu_{e}$ probability is

$$
P_{\mu e}^{\rm sbl} \simeq 4 |U_{e4}|^2 |U_{\mu 4}|^2 \sin^2 \frac{\Delta m_{41}^2 L}{4E}
$$

We compare the **KDAR neutrino** spectra with standard oscillations versus with sterile neutrinos to put bounds on the sterile parameter space

KDAR event spectra at $JSNS²$ with sterile neutrino

Appearance Disappearance

Results: constraints on sterile neutrino parameter space

Sensitivity of JSNS² (with KADAR only data) in constraining θ_{14} , θ_{24} and Δm^2_{41} from appearance and disappearance channel data

Results: constraints on sterile neutrino parameter space

M. Dentler et al., JHEP 08 (2018) 010

Constraints on the active-sterile mixing matrix element $|U_{\mu4}^2|$ from future KDAR data (black, **dotted), overlaid on bounds from CDHS, MINOS, and atmospheric neutrino data**

The best bounds (**as small as** $|U_{\mu 4}^2| \sim$ 10^{-3}) are obtained for $\Delta m^2_{41} > 2 \text{ eV}^2$ which is consistent with the baseline and energy of this experiment

Concluding Remarks

- ❑ The possibility of new physics searches such as **source NSI** and **sterile neutrino** have been explored exploiting KDAR neutrino facility at JSNS² experiment
- ❑ Unlike propagation NSI, source (or production) NSI is independent of matter potential and neutrino energy and can give rise to **'zero-distance flavour conversion'**
- □ Constraints on the non-standard coupling, for the first time in us sector (strange quark) **have been obtained:**

 $|\varepsilon_{\mu e}^{\text{us}}|$ < 0.03 (0.005) at 99% C.L. with current (future) statistics

□ We also find that with the JSNS² experiment and future KDAR only data Active sterile mixing can be probed down to $\left|U_{\mu4}^2\right|\sim 10^{-3}$ for $\varDelta m^2_{41}\sim 10$ eV 2

❑ Monoenergetic 236 MeV neutrinos from kaon decay-at-rest, can also be used to study neutrino-nucleus cross-section

Thank you \odot

With current data; 730 v_μ events

$JSNS²$ vs. LSND

Indication of a sterile neutrino ($\Delta m^2 \sim 1 eV^2$)

• Anomalies, which cannot be explained by standard neutrino oscillations for ~20 years are shown

- . JSNS² uses the same neutrino source (μ) , target (H), and detection principle (IBD) as the LSND
	- Even if the excess is not due to the oscillation, JSNS² can catch this directly
	- two advantages: short-pulsed beam and used the gadolinium(Gd)-loaded liquid scintillator(GdLS)

Dominant background source is pion decay-in-flight (DIF) neutrinos

• DIF background spectral shape estimated with MC • Both NuWro & GiBUU event generators are used for DIF background simulation

- As JSNS² is a surface based detector, we expect cosmic induced events to be the dominant \bullet source of backgrounds for this measurement.
- Cosmic muons can be produce a prompt & delayed event signature that is similar to that of **KDAR** neutrinos.
- We already measured the muon veto condition with no-beam data which means there is \bullet almost zero to muon interaction without cosmic induced muon.
	- \rightarrow Cosmic muon rejection with 99% efficiency.

2022. 10. 26.

NSI at Production and Detection Level

Neutrino states at sources and detectors:

$$
|\nu_{\alpha}^{s}\rangle = |\nu_{\alpha}\rangle + \sum_{\beta=e,\mu,\tau} \varepsilon_{\alpha\beta}^{s} |\nu_{\beta}\rangle = (1+\varepsilon^{s})U|\nu_{m}\rangle
$$

$$
\langle \nu_{\beta}^{d}| = \langle \nu_{\beta}| + \sum_{\alpha=e,\mu,\tau} \varepsilon_{\alpha\beta}^{d} \langle \nu_{\alpha}| = \langle \nu_{m}|U^{\dagger}[1+(\varepsilon^{d})^{\dagger}]
$$

Superpositions of pure orthonormal flavor eigenstates

Grossman (1995); Gonzalez-Garcia et al. (2001); Bilenky, Giunti (1993); Meloni et al. (2010) **END LANGER AND LANGER COMPANY** OQ