Towards model-independent event generation for BSM physics with GENIE

John Plows

NuFact 2024 - WG5 session: Neutrinos Beyond PMNS

16/Sep/2024

The problem stated

- Neutrino near detectors have large exposures: many events counted → potential to probe many kinds of BSM physics
 - Heavy Neutral Leptons, Higgs Portal Scalars, Boosted Dark Matter, Axion-Like Particles...

- Neutrino telescopes can also perform searches due to large size / large number of scattering centres
- 1. How can we maximise the potential for BSM searches?
- 2. What **inputs** do analyses need to search for anomalies?
- **3.** What **outputs** does theory need to constrain BSM landscape?

The problem stated

- There are many, **many** models available to look for
- It is not efficient to generate MC samples for all of them...

- Different models may predict similar final states but with model-dependent kinematics ⇒ optimisation problem!
 - Search for anomalies, not models (e.g. low-energy excess in LSND / MiniBooNE / MicroBooNE)

JHEP 08 (2023) 092, JHEP 01 (2024) 134, Phys. Rev. D 106 (2022) 092006

- Solution: **implement model-agnostic frameworks** for event generation
 - "Factor out" the model dependence: simulate signatures in a detector (formulate cuts, obtain efficiencies, reduce background) and weight events according to a model

What do we want to simulate?

- Particles may generally be **stable** or **unstable**
 - Stable particles scatter
 - Unstable particles decay

 10^{-6}

- Can parametrise relevant inputs of both long- and short-lived particles for analyses
 but need detailed flux prediction (kinematics) and geometry (spatial / time distribution)
- Focusing on long-lived particles (LLPs) first

How does this work?

- Similar action to BeamHNL input in current GENIE (Phys. Rev. D 107 (2023) 055003)
- **Upgrades** to visible-channel construction + geom calculations + output handling

na pa

Constructing visible channels

- Considering particle decays
- One wants to parametrise the sensitivity with respect to the product BR(prod) x BR(decay)
- Want to provide user with flexibility to "mix and match" different channels (or come up with new ones!)
- XML-based interface to construct channels
- **TODO**: Implement > 1 LLP in same decay


```
<!-- Specify the LLP masses to interpolate scores -->
<param type="vec-double" name="Masses" delim=";">
    0.000; 0.001; 0.005; 0.010; 0.030;
    0.050; 0.075; 0.100; 0.200; 0.300;
    0.500; 0.750; 1.000; 1.250; 1.500
</param>

<pr
```

</param>

```
<!-- Always specify parent first -->
<param type="vec-int" name="PDGList" delim=";">
411 ; 2000022022 ; -11
</param>
</modeObject>
```

User passes series of modeObject s

Each object specifies **one decay mode**

It consists of two vectors:

- **1. Scores**: at each reference mass, the score is the conditional probability that a parent of the specified type will decay via this mode
- 2. PDG list: specifies the particles of the decay

File lives in dedicated LLP config directory for ease of access

UNIVERSITY OF

VERPOOL

score
$$(K \to Xe) = \text{score} (K \to X\mu)$$

D scores:

	a/a	50 MeV	200 MeV	1 GeV
	$D \to X e$	0.2	0.55	0.85
VeV pi	$D \to X \mu$	0.15	0.45	0.15
MeV K	$D \to X \tau$	0.65	0	0
eV D	$D \to X K^0 e$	0.1	0.1	0.1
MeV D MeV D	$D \to X K^0 \mu$	0.1	0.1	0.1

D conditional probabilities:

a/a	50 MeV	200 MeV	1 GeV
$D \to X e$	0.167	0.458	0.708
$D \to X \mu$	0.125	0.375	0.125
$D \to X \tau$	0.542	0	0
$D \to X K^0 e$	0.083	0.083	0.083
$D \to X K^0 \mu$	0.083	0.083	0.083

Visible channel kinematics

- Model-independent approach means we have to scale back assumptions about polarisation (what is the spin of the particle we are producing / decaying?)
- Can circumvent this by saving the full particle stack for LLP production and decay
 - Full information needed for calculation of matrix elements

root	root [1] gRooTracker->GetEntries()						
(long	(long long) 1						
root	<pre>root [2] gRooTracker->Scan("LLP_production_pdgs:LLP_production_p4xs:LLP_production_p</pre>				_production_p		
*****	******	********	********	*******	*******	*****	*****
*	Row * Inst	tance * LLF	P_produ ★ L	_LP_produ *	LLP_produ	* LLP_produ *	LLP_produ *
*****	******	*********	*********	********	********	******	*****
*	0 *	0 *	411 *	0 *	r 0	* 0*	1.86966 *
*	0 *	1 * 2.0)00e+09 * 0	0.0090112 *	-0.037748	* 0.6606357 *	1.1991437 *
*	0 *	2 *	-13 * -	-0.009011 *	0.0377484	* -0.660635 *	0.6701562 *

(long	long) 3						

 $D^+ \rightarrow X + \mu^+$ in D rest frame

Applying the acceptance constraint

- The LLP production system **such that the LLP is accepted** should be saved
 - This is not a random decay... It is constrained by acceptance

• Solution:

- First throw random phase-space decay to get energies of channel in parent rest frame and save random momentum q_X^0
- Apply geometrical constraints to get lab-frame *p_X*
- Boost back by $\Lambda(\boldsymbol{\beta}_{parent})$ to obtain rest-frame \boldsymbol{q}_X
- Calculate quaternion \Leftrightarrow rotate $q_X^0 \leftrightarrow q_X$ and apply to all the particles in the system

10

Geometry calculations

- Important to know how large angular acceptance of detector is
 - Normally handled by "small angle approximation"
 - Assume detector has small transverse size compared to baseline
 - Assume front face of detector parallel to z axis

Geometry calculations

- Important to know how large angular acceptance of detector is
 - Normally handled by "small angle approximation"
 - Assume detector has small transverse size compared to baseline
 - Assume front face of detector parallel to z axis
 - Not necessarily valid at large viewing angles!

Why does this happen?

In prior calculations (BeamHNL) flux was calculated based on illuminated area = $1m^2$ with face normal to z

- Instead of scaling to detector element size:
- Use detector volume bounding box (can be your entire detector, or subdetector...) to estimate angle
- "Small-angle" uses the inscribed circle: needs to be corrected by factor $4/\pi$

Is that all there is to it?

LIVERPOOL

John Plows - ExoticLLP

LIVERPOOL

Large viewing angles **can** distort shapes

Geometry improvement

- Algorithm to calculate generic intersections of viewing plane with a bounding box is known (<u>Rezk Salama and Kolb, 2005</u>)
 - Anywhere between 3 and 6 vertices
- Implemented this "computer-vision" algorithm into GENIE
 - "Small-angle-like" approach: calculate area of polygon and replace with circle of equivalent area
- About O(3) slowdown with respect to small-angle approximation
- Option available to user to switch between the computer-vision algorithm and small-angle approximation

$$A = \Sigma_i A_i \mapsto \theta = \tan^{-1} \left(\frac{A}{\pi} \right) \mapsto \frac{\Omega}{4\pi} = \frac{1}{2} (1 - \cos \theta)$$

Vertex positioning

- Done in similar way to BeamHNL: force evaluation along a point in the detector top volume (passed as argument), check if acceptable, calculate entry and exit points using ROOT if yes
- **Difference**: lifetime is now explicitly passed as config-level argument

Output handling

- Too many handles to the conditional probability to pack into a single object
 - Need to know points of entry / exit for survival / decay probabilities...
 - Full kinematics of LLP production channel for polarisations...
 - Collimation-effect weight for the acceptance correction...
 - Branching ratio to production and decay channels...
- Solution: Written as a new class, FluxContainer, which keeps all this information
 - Technically present in BeamHNL but not written in meaningful way to output
 - FluxContainer is written as flat branches to a rootracker tree

LLP Mass	= 1
LLP_Lifetime	= 10
LLP_Flux_evtno	= 2
LLP Parent pdg	= 411
LLP_Parent_v4_N	EAR = (TLorentzVector*)0x5611f30ae010
LLP_Parent_v4	= (TLorentzVector*)0x5611f3101f80
LLP_Parent_p4_N	EAR = (TLorentzVector*)0x5611f2da1f50
LLP_Parent_p4	= (TLorentzVector*)0x5611f30eeee0
LLP_p4_NEAR	= (TLorentzVector*)0x5611f30da670
_, _ LLP_p4	= (TLorentzVector*)0x5611f30d8f80
LLP_EntryPoint_	NEAR = (TLorentzVector*)0x5611f30e73d0
LLP_EntryPoint	= (TLorentzVector*)0x5611f3107a30
LLP_ExitPoint_N	EAR = (TLorentzVector*)0x5611f3107ab0
LLP_ExitPoint	= (TLorentzVector*)0x5611f30f2c30
LLP_DecayPoint_I	NEAR = (TLorentzVector*)0x5611f30fdb70
LLP_DecayPoint	= (TLorentzVector*)0x5611f3113e60
LLP_Wgt_geom	= 3.21994e-06
LLP_Boost_facto	r = 6.57443
LLP_Wgt_collima	tion = 1.40078
LLP_Wgt_surviva	l = 0.00013532
LLP_Wgt_detdecay	y = 0.0620888
LLP_Vertex_rng	= 0.605103
LLP_production_	odgs = (vector <int>*)0x5611f30f3270</int>
LLP_production_	p4xs = (vector <double>*)0x5611f30fd160</double>
LLP_production_	p4ys = (vector <double>*)0x5611f2dcbce0</double>
LLP_production_	p4zs = (vector <double>*)0x5611f30bf200</double>
LLP production	$p_{4Fs} = (vector*)0x5611f2db5920$

Looking forward

- Finalising the architecture but some things need doing still:

 - Any more branches that need to be added to FluxContainer output?

 - Implement "polarisation weight" perhaps? Would it be useful to have a way for user to input a formula to modify said weight based on kinematics?
- Code is public! (lives in my personal Generator fork <u>(feature/ExoticLLP)</u> for now, feel free to try it out but **caveat emptor: this is not a validated official release!**)
 - But you'll hear from us when it is official $\textcircled{\odot}$
- Comments and ideas are welcome!

Thank you!

Backup

• Function to assign uniform number u to elapsed length ℓ :

$$\ell(u;\beta_X,\tau_X) = c\tau_X\beta_X\gamma_X \cdot \log_{10}\left[\left(1 - \exp\frac{-L}{c\tau_X\beta_X\gamma_X}\right)^{-1}\right],$$

where *L* is the maximum distance in the detector

(= distance between entry and exit points of LLP ray in the detector)

Branch	Description
LLP_Mass	Mass [MeV]
LLP_Lifetime	<i>cτ</i> [m]
LLP_Flux_evtno	Index of parent entry in input flux tree
LLP_Parent_pdg	PDG code of parent
LLP_Parent_v4 (v4_NEAR)	Parent decay vtx in local detector or flux (NEAR) coords
LLP_Parent_p4 (p4_NEAR)	Parent momentum in local detector or flux (NEAR) coords
LLP_p4 (p4_NEAR)	LLP momentum in local or flux coords
LLP_EntryPoint (EntryPoint_NEAR)	Entry point of LLP trajectory into detector volume
LLP_ExitPoint (ExitPoint_NEAR)	Exit point of LLP trajectory into detector volume
LLP_DecayPoint (DecayPoint_NEAR)	LLP decay vertex
LLP_Wgt_geom	Angular size of detector volume / 4pi
LLP_Boost_factor	Lab-frame E_X / parent-rest-frame E_X^*
LLP_Wgt_collimation	Modification of angular region due to collimation effect
LLP_Wgt_survival (Wgt_detdecay)	Probability of LLP survival to detector (decay inside vol)
LLP_Vertex_rng	Random number used to generate LLP vertex
LLP_production_(pdg, p4(x,y,z,E))s John Plows	PDG codes and 4-momenta (parent rest frame) of all s - ExoticLLP particles in LLP production channel

Collimation effect: reminder 90 Acceptance correction *A*₊ Acceptance correction A_ $0.00 \le \mathcal{A}_{-} < 0.10$ — 0.00 ≤ 𝔄₊ < 1.00</p> 1.00 ≤ 𝔄₊ < 1.01 0.10 ≤ 𝔄_ < 0.25 — 1.01 ≤ 𝔄₊ < 1.10</p> 80 — 0.25 ≤ 𝔄_ < 0.50</p> ____ 1.10 ≤ 𝔄 + < 1.25 0.50≤ ⊿_ < 0.67 ----- 1.25 ≤ 𝔄 + < 1.50 — 0.67 ≤ 𝔄_ < 1.00</p> — 1.50 ≤ 𝔄₊ < 2.00</p> — 1.00 ≤ 𝔄_ < 1.50</p> 70-— 2.00 ≤ 𝔄₊ < 5.00</p> — 1.50 ≤ 𝔄_ < 2.00</p> — 5.00 ≤ 𝔄₊ — 2.00 ≤ 𝔄_ Angular deviation ζ(deg) $K \rightarrow \mu + N_4$ $K \rightarrow \mu + N_4$ $E_{\kappa} = 0.8 \text{ GeV}$ $E_{\kappa} = 0.8 \text{ GeV}$ Forwards emission Backwards emission

20-

10-

0-

0.00

0.05

0.20

 $M_{\rm N4}({\rm GeV}/c^2)$

0.15

0.10

0.30

0.35

0.25

90-

80

70-

Angular deviation ζ(deg)

20-

10

0-

0.00

0.05

VERPOOL

UNIVERSITY OF

0.10

0.20

 $M_{\rm N4}({\rm GeV}/c^2)$

0.15

0.25

0.30

John Plows - ExoticLLP

0.35