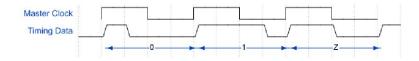

DAQ WG Status Report

Nicolò Tosi for the DAQ WG

Quick recap of central DAQ and Timing architecture

DAQ is based on Ethernet.



DAQ is optimized for FD, ND is somewhat simpler


Quick recap of central DAQ and Timing architecture

Fiber transmits encoded clock (62.5 MHz and data (timestamps, sync command, spill, ...)

Endpoints transmit back for delay compensation

Quick recap of central DAQ and Timing architecture

- We asked for O(10)-O(100) ps rms depending on subdetector
 - Both between and within subdetectors
 - Our strongest requirement applies only within a spill
 - DTS only "promised" O(100) ps
 - But they meant long term (i.e. drift), short term is better

- The requirement can be met
 - Within a spill, and a group of endpoints

PLL BW	Skew stdev.	
100Hz	31 ps	
400Hz	6.9 ps	
1kHz	2.8 ps	
4kHz	1.8 ps	From

Open Questions

- More detailed measurements of variance per endpoint group
 - So far only hard numbers for groups of 8 (same fiber)
 - Requires full uTCA crate with GIB, MIB, FIB(s)
 - System will be available at CERN for ProtoDUNE operation

- Beam timing measurement from accelerator seems lacking
 - Certainly does not reach O(100) ps
 - From our meetings with ND, Timing, TMS, there is consensus on having dedicated hardware

Plans for SAND subdetectors: GRAIN

GRAIN most closely mirrors the architecture of the FD for which DUNE DAQ was designed:

- **Cold** *camera board* inside cryostat, with the SiPMs and ASIC
- Cryo-vacuum feedthrough
- Warm interface board, connected to ~8 camera boards
- The *interface board* will be an endpoint for the DAQ, timing and slow control
 - Implemented using the same type of hardware of the FD, i.e. an AMD Zynq or similar (FPGA + ARM CPU)

ND Timing Distribution System Camera Board Interface Distribution Camera Board Flange(s) Board Board (GIB) Camera Board DAQ and LV and HV Slow Control ... **Supplies GbE Switch**

From the future GRAIN ASIC requirement document https://www.overleaf.com/read/fzqtfwdqkpyn#9f1f56

DAQ WG contact: Sergio and Nicolò

Groups involved: BO, GE, TO

Plans for SAND subdetectors: ECAL

Meeting with CAEN during Jan CM:

- Readout based on current Preamp + Discriminator + picoTDC explored
 - There is potential but not all physics requirements demonstrated
- Integration with DAQ non trivial
 - CAEN solution based on FERS boards
 - FERS concentrator would be modified to serve as DAQ/Timing/SC endpoint
 - Technical challenges and IP/maintenance/support concerns
 - Degradation and additional complexity of timing distribution (two systems in sequence)

Alternative in-house solution could be pursued, but there is no one working on it
Groups involved: CAEN, ROMA1
DAQ WG contact: <open position>

Plans for SAND subdetectors: STT

Groups involved: SC (Roberto), ??

DAQ WG contact: <open position>

Activities in progress (Q1 2024)

- Planning of extended tests of the Timing system
 - Primary contact: Dave Cussans, Bristol
 - Aim is to prepare a test to confirm timing variance over endpoints from different fibers

- Initial discussion on a Beam Synchronization Device
 - Coordinate with FNAL, LBNF Project, other ND (especially TMS), etc ...
 - Desire to specify a *fast* beam pickup upstream of target (coil, RW, ...), to get better beam synchronization than baseline proposal

- Identifying a reasonable TDR-level design for STT and ECAL
 - Including potential alternate solutions

Future activities planned for 2024

• Timing tests (Q2-Q3 depending on Protodune exact schedule)

- TDR writing, including items that have not been addressed so far:
 - Slow control (hardware and software side)
 - Software side of DAQ (including online software "trigger", e.g. for cosmics/calibration)

Draft contents of DAQ chapter of the TDR

- DAQ Architecture
- Detector Control (DCS) and Detector Safety system (DSS)
- Timing System
 - Trigger System
 - Calibration
- DAQ/DCS Interface description:
 - GRAIN (starting from the ASIC doc https://www.overleaf.com/read/fzqtfwdqkpyn#9f1f56)
 - o STT
 - Calorimeter