

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

ORNL PUP-II STS QH10 Quadrupole

Vladimir Kashikhin ORNL-FNAL STS PDR Narrow Quadrupole Review April 16, 2024

Outline

- Beam lines layout
- Specification QH10
- Quadrupole magnetic design
- Quadrupole engineering parameters
- Summary

Beamline Magnets

RTST Extraction Region Design Concept

• RTST proton beam to intersect truck entrance wall at prescribed position and angle

CAK RIDGE

Need narrow quadrupoles to provide some clearance between: QH10-STS Beamline and DH01-QV11.

3 V. Kashikhin | ORNL STS Narrow QH10 Quadrupole PDR Review

04/16/2024

Quadrupole Specifications

RTBT Beam Line Magnet Parameters									
		Parameter Value							
Name	Unit	QV07	QH08	QV09 QH10*		QV11*			
Magnet New/Old		Old	Old	New	New	New			
Magnet center Z-coordinate	m	0	3.8608	7.7216	<mark>11.5824</mark>	15.4432			
Magnet center X-coordinate	m	0	0	0	0	0			
Angle of magnet rotation	Deg.	0	0	0	0	0			
Gradient	T/m	-5.613	5.876	-5.613	<mark>5.876</mark>	-5.613			
Integrated field/gradient	T-m/T	-2.8065	2.938	-2.8065	<mark>2.938</mark>	-2.8065			
Effective length	m	0.5	0.5	0.5	0.5	0.5			
Magnet Gap/Aperture diameter	m	0.209	0.209	0.4	0.209	0.209			
Good field area diameter**	m	0.147	0.147		<mark>0.147</mark>	0.147			
Good field area horizontal	m	0.147	0.147	-0.0735 < x < 0.2003	<mark>0.147</mark>	0.147			
Good field area vertical	m	0.147	0.147	0.147	<mark>0.147</mark>	0.147			
Field homogeneity/non-linearity	%	0.1	0.1	0.1 target	0.1	0.1			
Number of coils		4	4	4	4	4			
Coil current	А								
Coil number of turns		28	28	28	<mark>28</mark>	28			
Magnet yoke length	m	0.4	0.4	0.4	<mark>0.4</mark>	0.4			
Magnet maximum physical length	m	0.67	0.67	TBD. 0.67 assumed	<mark>0.67</mark>	0.67			
					TBD. 0.668	TBD. 0.668			
Magnet maximum physical width	m	1.05	1.05	TBD.***	assumed	assumed			
	*QH10, QV11 are the same as QV07, QH08 but with narrow								
Abbreviaitions:	yoke								
TBC - To Be Confirmed	** Spec is given in as horizontal x vertical								
TBD - To Be Determined	*** Beam axis is 0.99 m from floor								

4 V. Kashikhin | ORNL STS Narrow QH10 Quadrupole PDR Review

04/16/2024

‡Fermilab

Old Quadrupole 21Q40

5

- Quadrupole too wide and overlaps with other magnets.
- Should be decreased magnet yoke width.
- Coils and quadrupole poles are not modified.
- Power and cooling parameters are the same as in the old magnet.
- Figure-8 quadrupole configuration might be a preferable choice.

STS Narrow Quadrupole QH10, V1

- Simulated stp file geometry.
- Iron yoke highly saturated to 2.18 T.
- Needed 31.2 kA/coil to generate an integrated gradient 2.895 T (Spec. 2.938 T).
 Pole profile and end chamfers are good providing 1 unit field quality at 75 mm reference radius.
- > Effective length is stable within 1 mm.

QH10_Narow_26kA_50_800_100_115_120%_032421a Narrow Quadrupole from stp file

		Coll Ampere-turns in % to 26kA						
Parameter	Unit	50	80	100	115	120		
Coil ampere-turns	kA	13	20.8	26	29.9	31.2		
Center gradient	T/m	2.955	4.551	5.336	5.825	5.973		
ntegrated gradient (Spec. 2.938T)	Т	1.440	2.215	2.591	2.825	2.895		
Effective length	m	0.487	0.487	0.486	0.485	0.485		
Maximum flux density (narrow wall)	Т	1.450	1.850	2.100	2.170	2.180		
Harmonics for Rref	m	0.075	0.075	0.075	0.075	0.075		
ntegrated field at Rref (from Harm)	T-m	0.108	0.166	0.194	0.212	0.217		
ntegrated gradient (from Harmonics)	Т	1.440	2.215	2.592	2.825	2.895		

04/16/2024

STS Narrow Quadrupole QH10, V3 (increased yoke)

29/Mar/2021 16:40:09

- Updated geometry: increased top/bottom yoke thickness and added side wall thickness.
- Iron yoke is less saturated < 1.85 T.</p>
- Needed 27.4 kA/coil to generate an integrated gradient 2.956 T (Spec. 2.938 T).
- Used an old pole profile and end chamfers
- which are good providing 1 unit field quality at 75 mm reference radius.
- Effective length is stable within 1 mm.

		Title	•	
15 - - - - - - - - - - - - - - - - - - -				-z=0
0	0.3 0	35 0.4 X	0.45	0.5

Peak fringe field 14 Gauss.

	Update 03252	ed Yoke \ 1b	/3				
	Coil Ampere-turns in % to 26kA						
Parameter	Unit	100	110	105.385			
Coil ampere-turns	kA	26	28.6	27.4			
Center gradient	T/m	5.787	6.277	6.07			
Integrated gradient (Spec. 2.938T)	Т	2.816	3.057	2.956			
Effective length	m	0.487	0.487	0.487			
Maximum flux density (narrow wall)	Т	1.800	1.900	1.900			
Harmonics for Rref	m	0.075	0.075	0.075			
Integrated field at Rref (from Harm)	T-m	0.213	0.229	0.222			
Integrated gradient (from Harmonics)	Т	2.834	3.059	2.958			

04/16/2024

Quadrupole Harmonics Old vs. New

21Q40_19k/	A_V1_012	221a										
Old 21Q40 d	quadrupo	le, lw=19	kAcoil	Red-mig	ht be bec	cause of i	ron satur	ation				
Rref=0.075 m	0.075											
Zmx	ai2	ai1		ai2	ai3	ai4	ai5	ai6	ai7	ai8	ai9	ai10
1	0.1585	0		10000	0	-1.79	0	10.77	0	-0.26	0	-0.35
Int.gradient	2.113											
QH10_Narro	ow_26kA_	V3_0325	21b									
Quadrupole	QH10 wi	th 27.4 k/	Vcoil									
Rref=0.075 m	0.075											
Zmx	ai2	ai1		ai2	ai3	ai4	ai5	ai6	ai7	ai8	ai9	ai10
1	0.2218	0		10000	0	-0.29	0 0	0.064	0	-0.022	0	-0.805
Int. Gradient	2.95733 3											
Spec	2.938											

Fermilab

04/16/2024

All harmonics calculated for the reference radius 75 mm.
 For the new quadrupole all harmonics are less than 1 unit.

V. Kashikhin | ORNL STS Narrow QH10 Quadrupole PDR Review

8

STS Quadrupole Geometries

Updated geometry: increased 100 mm top/bottom yoke thickness and added 25 mm (0.5") side wall thickness.

9 V. Kashikhin | ORNL STS Narrow QH10 Quadrupole PDR Review

04/16/2024

🛟 Fermilab

- Simulated an old quadrupole geometry at 19 kA/coil.
- Simulated the first version of narrow quadrupole which has the iron yoke over saturated above 2 T.
- Proposed for the further consideration the narrow Figure-8 quadrupole with increased vertical yoke height.
- The quadrupole has integrated harmonics less than 1 unit.
- This quadrupole fit the magnet specification and geometry limits.

