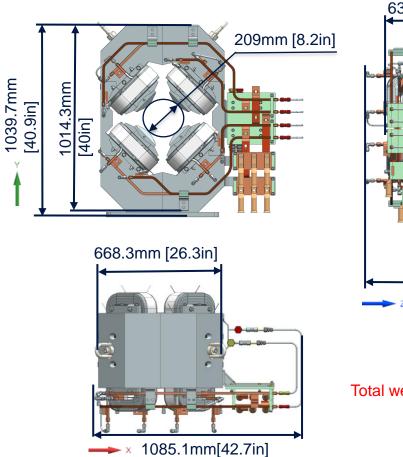


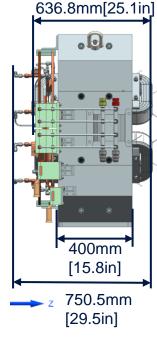
21Q40 Narrow Quadrupole PDR

Mechanical design

Vitaly Chernenok 16 April 2024

- Parameters of quadrupole
- Stages of quadrupole assembly
- Tooling and assembly features
- Electrical and water connection
- Stand interface
- Summary


Parameter list


Magnetic field

Parameters	Value	Units
Magnetic field	2.938	Т
Gradient	5.825	T/m
Integrated field	2.956	T-m/T
Coil amper- turns	27.4	kA

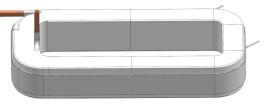
Iron Yoke

Parameters	Value	Units
Aperture	209 8.2	Mm In
Width	668.3 26.4	mm In
Height	1014.3 40	mm In
Length	400 15.8	mm In

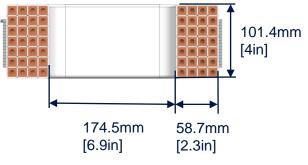
Total weight ~ 1706 kg [3761 lbs.]

‡ Fermilab

Parameter list for cooling system


Cooling system

Parameters	Value	Units
Number of coils	4	Quant ity
Parallel branch	4	Quant ity
Number of turns in one parallel branch	28	Quant ity
Copper conductor	0.25x0.25 12.7x12.7	ln mm
Diameter of the hole in the conductor	0.25 6.35	ln mm
Conductor cross-sectional	0.198 127.7	Sq.inch mm²
Nominal input temperature	30 86	°C °F
Overheating	77.9612 [24.534]	°C °F


Electrical power (one coil)

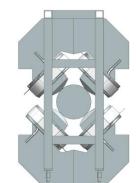
Parameters	Value	Units
Current	978	А
Power losses	5.562	kW
Electrical resistance	0.006	Ohm
Current density	7.65	Amps/ mm²
Voltage drop	5.87	Volt

Coil – 50 kg [110 lbs.]

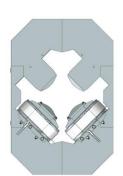
Front cross-section of the coil

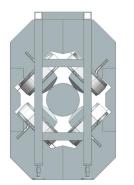
6.35mm [0.25in] Side cross section of the coil 496.3mm [19.5in] 12.7mm [0.5in] 636.8mm[25.1in] Construction Construction

Stages of quadrupole assembly

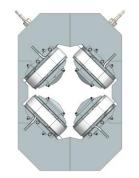

Installing the coil

Disassembly

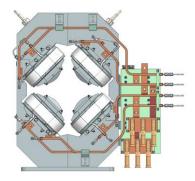

5


Half assembly

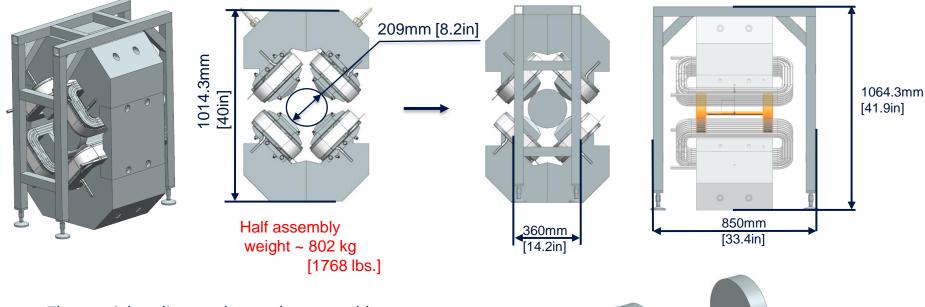
Positioning


Assembly to perform rotation

Installation of side plates


Rotation

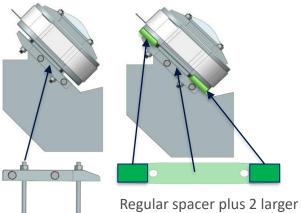
Dismantling the tooling


Installation of tooling

Installation of attachments equipment

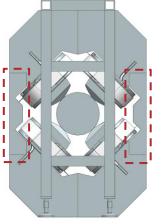
Tooling for assemble

 The special tooling can be used to assemble or disassemble the magnet

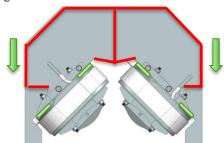

6

 The welded structure made from a square profile must withstand a weight of 802 kilograms[1768 lbs.]

tooling for aligning half-assemblies with each other

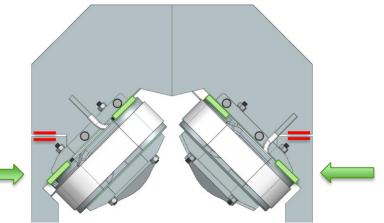


Installing the coil

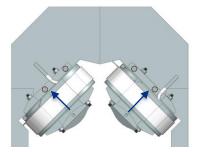


7

spacers to increase the size between the coil and the core



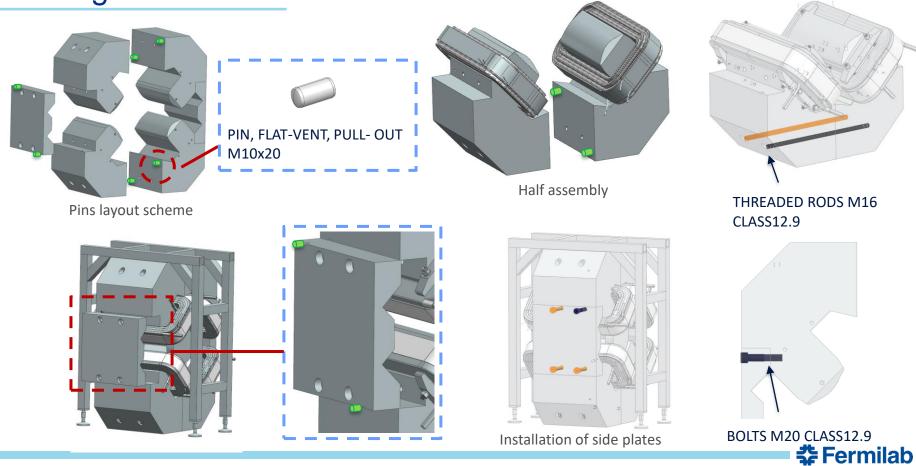
Installation of side plates



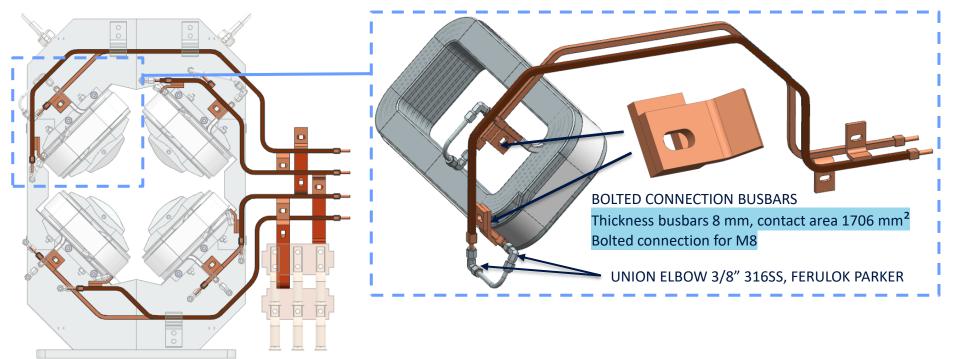
Installation of the upper half-core and its fastening

Supporting tooling is not shown

Obtaining the required clearance for installing side plates

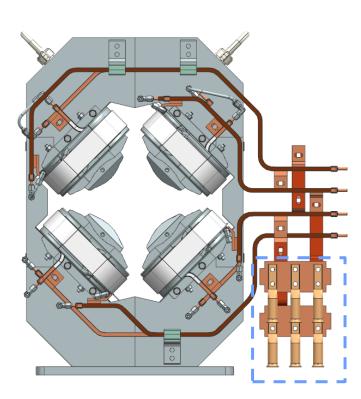


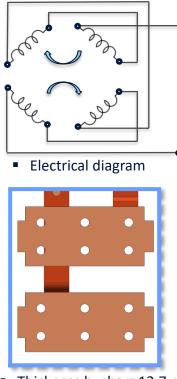
Removing the spacer and tightening the coils



Pinning scheme

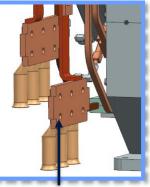
8


Electrical and water connection

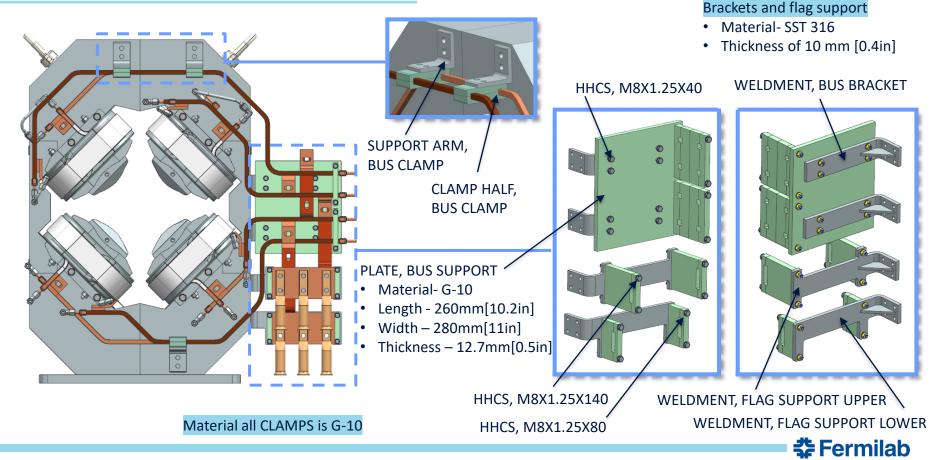


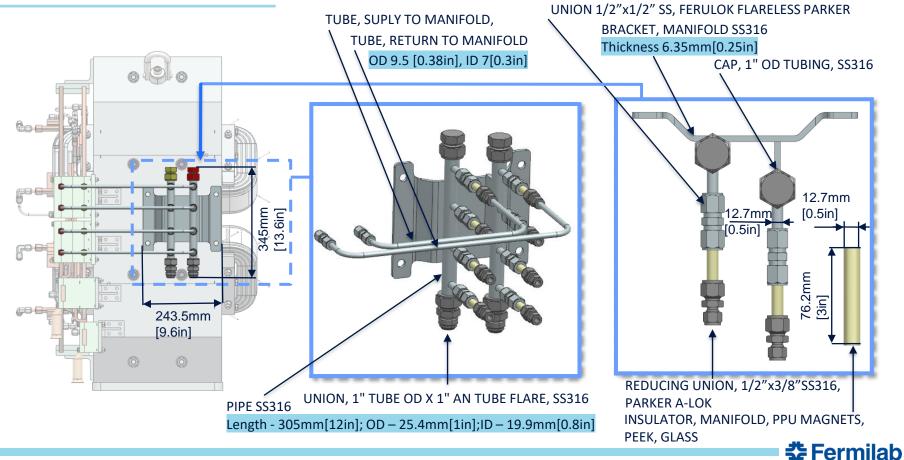
- Each coil is a parallel branch
- All coils have detachable connections for water and electricity

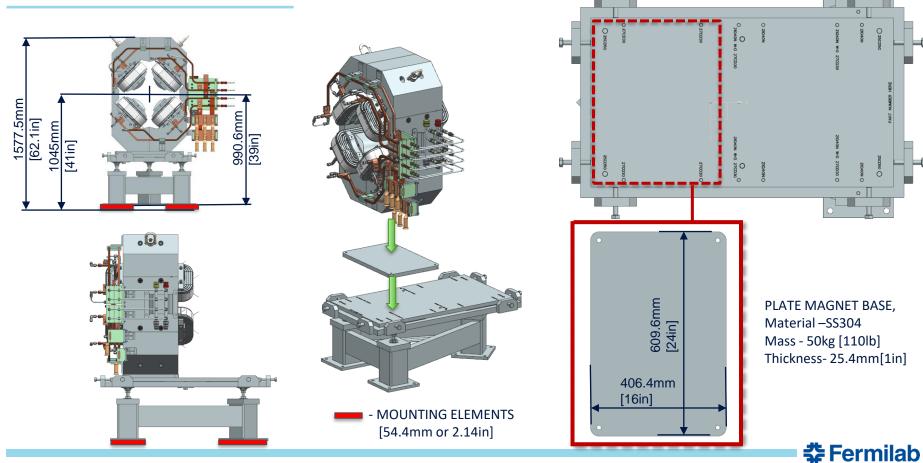
Power flags



- Thickness busbars 12.7 mm
- Contact area 18588 mm²
- Bolted connection for M12


COMPRESSION LUG,2 HOLES, LSSSF500-12-6


POWER FLAG, NARROW QUAD, ORNL STS

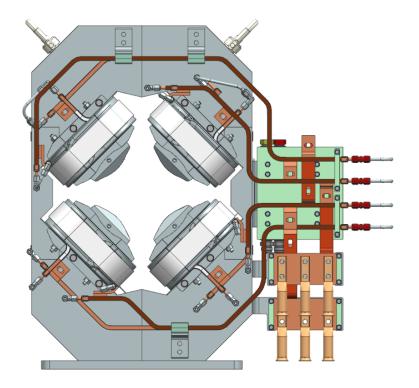

Support and clamping structure

Manifolds assembly

Stand interface

FC0123314-STAND, NARROW QUAD, FROMORNL STS

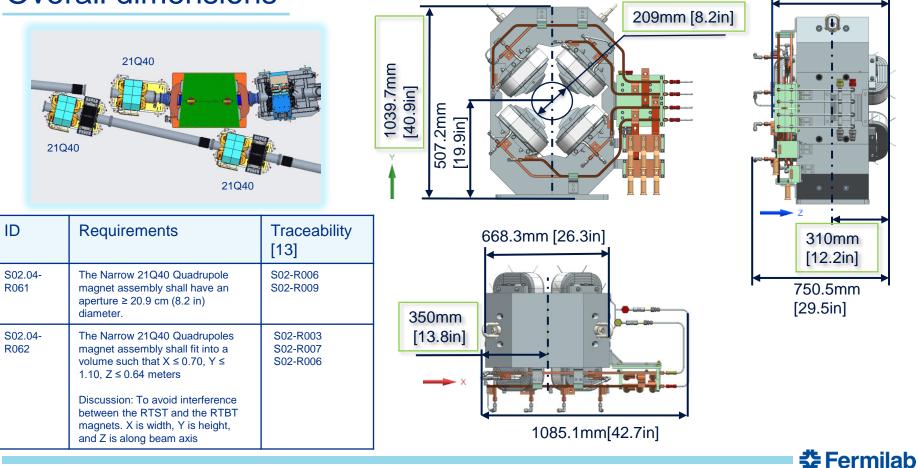
- The CAD-model is 80% complete
- The scheme for the assembly of the core and coils has been considered
- Developed a method for connecting coils
- The design of power buses and the manifold is designed to meet the considered of "RTST Extraction Magnet Requirements".
- Design criteria and design parameters are defined
- The project is feasible

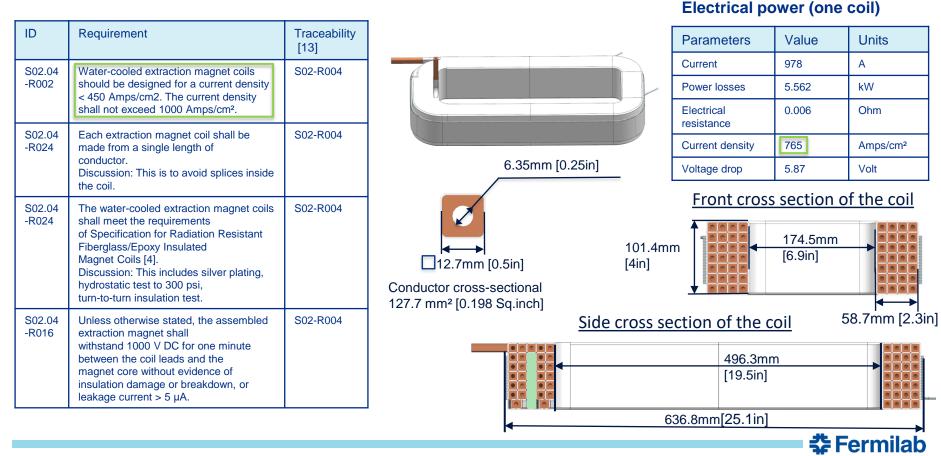


21Q40 Narrow Quadrupole PDR

Compliance with Specification

Vitaly Chernenok 16 April 2024


- Geometric dimensions
- Parameter list for cooling system
- Temperature switch
- Grounding and fiducials
- Power flags
- Summary



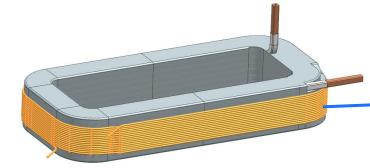
Overall dimensions

636.8mm[25.1in]

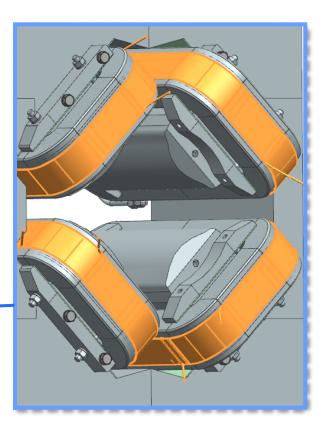
Parameter list for cooling system

Parameter list for cooling system

ID	Requirement	Traceability [13]
S02.04- R004	Water-cooled extraction magnet coils should be designed to have a temperature rise < 20° C (36° F) at the maximum power supply current with an inlet water temperature between 29.4° C (85° F) and 35.0° C (95° F). Discussion: Desired maximum temperature rise is 11-14° C ($20-25^{\circ}$ F)	Design Requirement
S02.04- R005	Water-cooled extraction magnet coils should be designed for a water flow velocity < 2 m/s (6.56 ft/s). The water flow velocity shall not exceed 2.4 m/s (8 ft/s). Discussion: From Review of Cooling Water Chemistry at ORNL/SNS [2], "High local water velocities (> 2m/s) would cause accelerated dissolution of the oxide layer, possibly causing local material loss and increased copper transport. Also need to ensure that the water flow is moderately turbulent (2000 $\leq Re \leq 100000$)."	S02-R004
S02.04- R006	The cooling water pressure differential across the extraction magnets shall not exceed 60 psi (414 kPa) to meet requirement S02.04-R004. Discussion: This is to support a Cooling Water System design pressure ≤ 150 psi. The desired pressure differential is between 30 and 50 psi.	Design Requirement
S02.04- R015	For water-cooled extraction magnets, the assembled magnet shall withstand 300 psi (2068 kPa) hydrostatic (water) test pressure for one hour without evidence of external leakage or internal pressure drop other than that resulting from a change in water temperature. Discussion: 300 psi is 2 x the max targeted water pressure in the SNS water system.	S02-R006


Cooling system

ocoming by otom			
Parameters	Value	Units	
Parallel branch	4	Quantity	
Number of turns in one parallel branch	28	Quantity	
Copper conductor	0.25x0.25 12.7x12.7	ln mm	
Diameter of the hole in the conductor	0.25 6.35	ln mm	
Conductor cross- sectional	0.198 127.7	Sq.inch mm²	
Nominal input temperature	30 86	°C °F	
Water pressure drop	58 405.3	psi kPa	
Total water flow	0.054	l/s	
Water velocity	1.71	m/s	
Overheating	77.9612 24.534	°F °C	



Trim coils

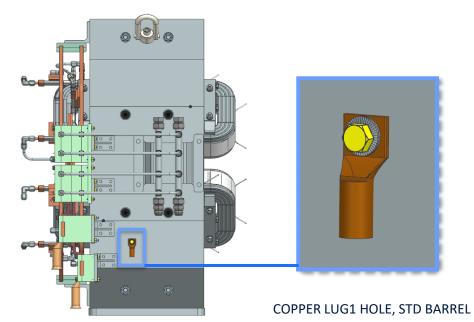
ID	Requirement	Traceability [13]
S02.04 -R057	The Narrow 21Q40 Quadrupole magnet assembly shall have a trim coil wound on each main coil with an integrated quadrupole field of 0.0284 T. Discussion: The Narrow Quad trim coil will have the same field as the existing 21Q40 trim [1].	S02-R007

Trim coils are installed in all main coils

Temperature switch

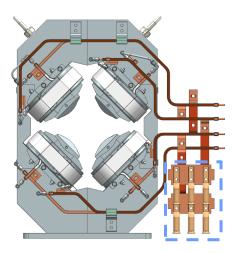
ID	Requirement	Traceability [13]	
S02.04- R007	Each extraction magnet temperature switch shall be hardwired to the magnet power supply to turn off the supply if the temperature limit is exceeded.	S02-R004 S02-R006	
S02.04- R008	Water-cooled extraction magnet coils shall have at least one temperature switch per water flow path. The switch shall be mounted on the insulated coil near the cooling water outlet end of the coil.	S02-R004 S02-R006	
S02.04- R009	The temperature switch required in S02.04-R008 shall have a specified $170^{\circ} \pm 5^{\circ}$ F (76.7° $\pm 2.8^{\circ}$ C) trip point. The switch contacts shall be electrically isolated from the coil. The reset temperature shall be specified to be $150 \pm 5^{\circ}$ F (65.6° $\pm 2.8^{\circ}$ C).	S02-R004 S02-R006	
	Discussion: The preferred switch is Sensata 4344.		

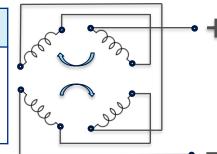
The Sensata 4344-184 is a KLIXON[®] Commercial Hermetic 1/2" Thermostat manufactured by Sensata Technologies Trip point - $170^{\circ} \pm 5^{\circ}$ F (76.7° $\pm 2.8^{\circ}$ C).

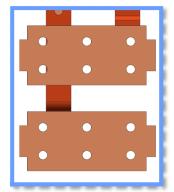

FC0075125-SWITCH, THERMAL, SINGLE POLE SEALED

Grounding and fiducials

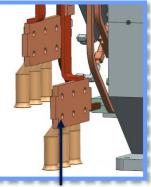
ID	Requirement	Traceability [13]
S02.04- R010	All extraction magnet water manifold components shall be electrically grounded to the magnet core.	S02-R009
S02.04- R021	The extraction magnet core shall be grounded to the tunnel ground system.	S02-R009
S02.04- R014	The extraction magnet assembly shall have external fiducials capable of supporting magnet alignment to 100-micron in x/y and 1-mrad yaw, pitch, and roll. Discussion: This requirement is relative to the SNS Coordinate System where the Z axis is along the beam line. The location of fiducials on the magnet is important – details TBD. The positioning along the beam axis is not as critical – within ~ 1 cm.	S02-R003 S02-R007


Currently, locations for fiducials were not determined.



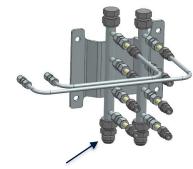

Power flags

ID	Requirement	Traceability [13]	6
S02.04 -R018	The extraction magnet assembly shall be designed with terminal blocks or flags to mate with cable termination lugs. Discussion: Intent is to conform to SNS standard connections.	Design Requirement	ee ee

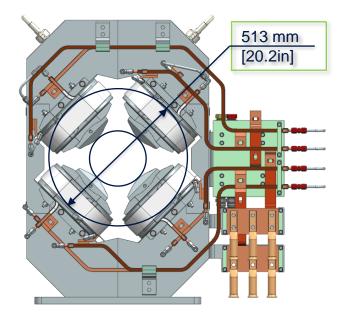

Electrical diagram

- Thickness busbars 12.7 mm
- Contact area 18588 mm²
- Bolted connection for M12

COMPRESSION LUG,2 HOLES, LSSSF500-12-6

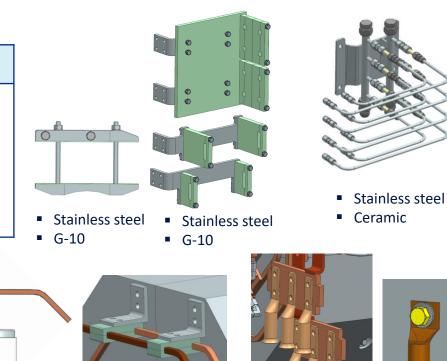


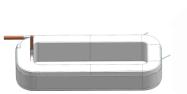
POWER FLAG, NARROW QUAD, ORNL STS


Manifolds assembly

ID	Requirement	Traceability [13]
S02.04 -R028	Extraction magnet water connection ports shall be compatible with female 37° flair JIC (SAE J514/ISO 8434-2) hose fittings, $1 - 1/16 - 12$ thread size. Discussion: Intent is to be compatible with Parker p/n 10656-12-12C hose fitting.	Design Requirement
S02.04 -R029	Extraction magnet water hoses shall be routed a minimum of 6" (15.2 cm) away from the magnet aperture. Discussion: Intent is to minimize radiation damage to hoses.	S02-R004

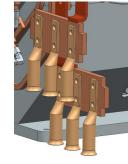
UNION, 1" TUBE OD X 1" AN TUBE FLARE, SS316


Compatible with female 37° flair JIC (SAE J514/ISO 8434-2)



Materials

ID	Requirement	Traceability [13]
S02.04 -R027	The extraction magnet assembly wetted parts shall be OFHC copper, stainless steel, ceramic, or approved hose material. Discussion: No aluminum or brass is allowed. OFHC copper and stainless steel are preferred. See Characterization of Particulate Material from Two Filters Associated with the SNS Cooling System [5], and Review of Cooling Water Chemistry at ORNL/SNS [2] for water quality discussions.	S02-R004

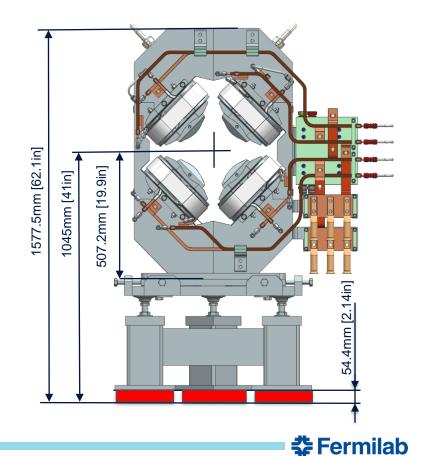


- Copper
- Fiberglass tape
- G-10

- Stainless steel
- Copper

Stainless steel • G-10

Copper



ID	Requirement	Traceability [13]
S02.04- R020	The extraction magnet assembly shall be designed such that the magnet (mechanical) central axis can be placed coincident with the beam path (at a 1.045 m nominal beam height) mounted on a support that meets requirements S02.11-R002 and S02.11-R011. Discussion: This is intended to ensure that there is enough clearance between the magnet and the floor for a support stand with some vertical adjustment. The nominal beam height was derived from the elevations on the Burns and McDonnell RTST Stub drawings. Floor elevation 1076', Beam line elevation 1079.43'. The RTBT beam height is listed in [3] as "approximately 41 inches above the floor"	S02-R003 S02-R007

- MOUNTING ELEMENTS [54.4mm or 2.14in]

- The Narrow quadrupole design was reviewed to ensure compliance with the specification.
- The water-cooling parameters in the chapter overheating are agreed upon.
- The fiducial system has not been developed but will be added shortly.
- The presented design corresponds to the required technical characteristics.

