Improving RISM prediction – Unfolding procedure revised

Setup Overview

- Improve Etrue unfolding first by using a small script (1 CAF file)
 - Plot Erec forward folding vs $ErecCAF \rightarrow cross check everything works fine$
 - Plot EtrueUnfold Vs EtrueCAF \rightarrow optimize regularization parameter
- Implement the changes within PRISM analysis \rightarrow compare to previous results
- Still some things left to be improved BUT getting there :)

CAF file distributions

- Events with ALL Reco cuts \rightarrow 'data' like \rightarrow at this point no efficiency applied \rightarrow only trying to translate from Ereco to Etrue using the info from CAF file
- Use equal bin widths between 0.5 11 GeV
 - 1 bin 0-0.5 GeV and 1 bin 11-120GeV

CAF file distributions

- Events with ALL Reco cuts \rightarrow 'data' like \rightarrow at this point no efficiency applied \rightarrow only trying to translate from Ereco to Etrue using the info from CAF file
- Use equal bin widths between 0.5 11 GeV
 - 1 bin 0-0.5 GeV and 1 bin 11-120GeV

CAF file smearing matrix

• Only want to reproduce the signal-like distributions (no efficiency involved at this stage)

CAF file smearing matrix

• Only want to reproduce the signal-like distributions (no efficiency involved at this stage)

Reconstructed energy from forward folding

True energy - unfolding

- Tikhonov regularization:
 - minimize $||M_{ND}$ Etrue Erec $||^2$ + $||\Gamma$ Etrue $||^2$
 - Γ regularization matrix

$$\boldsymbol{\Gamma} = \tau_{unf.} \begin{pmatrix} 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$$
regularization parameter

- this form of the matrix is corresponding to a regularization of the second derivative: approx. by $(x_{i+1} - x_i) - (x_i - x_{i-1})$. $L_{i,i} = 1, L_{i,i+1} = -2, L_{i,i+2} = 1.$

- this form of the matrix is corresponding to a regularization of the second derivative: approx. by $x_{i+1} - x_i$

 $L_{i,i} = -1$ and $L_{i,i+1} = 1$

True energy - unfolding

- Tikhonov regularization:
 - minimize $||M_{ND}$ Etrue Erec $||^2$ + $||\Gamma$ Etrue $||^2$
 - Γ regularization matrix

 $\boldsymbol{\Gamma} = \tau_{unf.} \begin{pmatrix} 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$ regularization parameter

- this form of the matrix is corresponding to a regularization of the second derivative: approx. by $(x_{i+1} - x_i) - (x_i - x_{i-1})$. $L_{i,i} = 1, L_{i,i+1} = -2, L_{i,i+2} = 1.$

$$\boldsymbol{\Gamma} = \tau_{unf.} \begin{pmatrix} -1 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & -1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$
regularization
parameter

- this form of the matrix is corresponding to a regularization of the second derivative: approx. by $x_{i+1} - x_i$

 $L_{i,i} = -1$ and $L_{i,i+1} = 1$

True energy – unfolded distributions and PRISM Prediction

PRISM Prediction different binning – ZOOM in highest and lowest energies

 \rightarrow main problem still to be solved / understood regarding the highest energy bin..

Still TODO (but getting there..)

- try different binning (maybe more bins between 10-120 GeV, as well as maybe finer binning between 0 0.5)
- adapt unfolding procedure to bin content / bin width → solve any binning related problem
- still need to understand exactly the "block procedure" existent within PRISM analysis code, but should be done within the next week

 \rightarrow Once this is solved we can re-iterate over the flux systematics

CAF file smearing matrix

- Only want to reproduce the signal-like distributions (no efficiency involved at this stage)
 - \rightarrow cross check normalization works properly

Meanwhile..

